- Adler-Milstein, J., Aggarwal, N., Ahmed, M., Castner, J., Evans, B. J., Gonzalez, A. A., James, C. A., Lin, S., Mandl, K. D., Matheny, M. E., Sendak, M. P., Shachar, C., & Williams, A. (2022). Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. NAM perspectives, 2022, 10.31478/202209c. https://doi.org/10.31478/202209c
- Burns, C. M., Pung, L., Witt, D., Gao, M., Sendak, M., Balu, S., Krakower, D., Marcus, J. L., Okeke, N. L., & Clement, M. E. (2023). Development of a Human Immunodeficiency Virus Risk Prediction Model Using Electronic Health Record Data From an Academic Health System in the Southern United States. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 76(2), 299–306. https://doi.org/10.1093/cid/ciac775
- Byng, D., Thomas, S. M., Rushing, C. N., Lynch, T., McCarthy, A., Francescatti, A. B., Frank, E. S., Partridge, A. H., Thompson, A. M., Retèl, V. P., van Harten, W. H., Grimm, L. J., Hyslop, T., Hwang, E. S., & Ryser, M. D. (2023). Surveillance Imaging after Primary Diagnosis of Ductal Carcinoma in Situ. Radiology, 221210. Advance online publication. https://doi.org/10.1148/radiol.221210
- Chang, F., Krishnan, J., Hurst, J. H., Yarrington, M. E., Anderson, D. J., O'Brien, E. C., & Goldstein, B. A. (2023). Comparing Natural Language Processing and Structured Medical Data to Develop a Computable Phenotype for Patients Hospitalized Due to COVID-19: Retrospective Analysis. JMIR medical informatics, 10.2196/46267. Advance online publication. https://doi.org/10.2196/46267
- Chen, J., Engelhard, M., Henao, R., Berchuck, S., Eichner, B., Perrin, E. M., Sapiro, G., & Dawson, G. (2023). Enhancing early autism prediction based on electronic records using clinical narratives. Journal of biomedical informatics, 104390. Advance online publication. https://doi.org/10.1016/j.jbi.2023.104390
- Chikwetu, L., Miao, Y., Woldetensae, M. K., Bell, D., Goldenholz, D. M., & Dunn, J. (2023). Does deidentification of data from wearable devices give us a false sense of security? A systematic review. The Lancet. Digital health, S2589-7500(22)00234-5. Advance online publication. https://doi.org/10.1016/S2589-7500(22)00234-5
- Eisenstein, E. L., Zozus, M. N., Garza, M. Y., Lanham, H. J., Adagarla, B., Walden, A., Benjamin, D. K., Zimmerman, K. O., Kumar, K. R., & Best Pharmaceuticals for Children Act - Pediatric Trials Network Steering Committee (2023). Assessing clinical site readiness for electronic health record (EHR)-to-electronic data capture (EDC) automated data collection. Contemporary clinical trials, 128, 107144. https://doi.org/10.1016/j.cct.2023.107144
- Engelhard, M. M., Henao, R., Berchuck, S. I., Chen, J., Eichner, B., Herkert, D., Kollins, S. H., Olson, A., Perrin, E. M., Rogers, U., Sullivan, C., Zhu, Y., Sapiro, G., & Dawson, G. (2023). Predictive Value of Early Autism Detection Models Based on Electronic Health Record Data Collected Before Age 1 Year. JAMA network open, 6(2), e2254303. https://doi.org/10.1001/jamanetworkopen.2022.54303
- Fayanju, O. M., Greenup, R. A., Zafar, S. Y., Hyslop, T., Hwang, E. S., & Fish, L. J. (2023). Modifiable Barriers and Facilitators for Breast Cancer Care: A Thematic Analysis of Patient and Provider Perspectives. The Journal of surgical research, 284, 269–279. Advance online publication. https://doi.org/10.1016/j.jss.2022.11.074
- Hong, C., Pencina, M. J., Wojdyla, D. M., Hall, J. L., Judd, S. E., Cary, M., Engelhard, M. M., Berchuck, S., Xian, Y., D'Agostino, R., Sr, Howard, G., Kissela, B., & Henao, R. (2023). Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups. JAMA, 329(4), 306–317. https://doi.org/10.1001/jama.2022.24683
- Hong, C., Liang, L., Yuan, Q., Cho, K., Liao, K. P., Pencina, M. J., Christiani, D. C., & Cai, T. (2023). Semi-supervised calibration of noisy event risk (SCANER) with electronic health records. Journal of biomedical informatics, 144, 104425. Advance online publication. https://doi.org/10.1016/j.jbi.2023.104425
- Hong, J. C., Patel, P., Eclov, N. C. W., Stephens, S. J., Mowery, Y. M., Tenenbaum, J. D., & Palta, M. (2023). Healthcare provider evaluation of machine learning-directed care: reactions to deployment on a randomised controlled study. BMJ health & care informatics, 30(1), e100674. https://doi.org/10.1136/bmjhci-2022-100674
- Hughes, A., Shandhi, M. M. H., Master, H., Dunn, J., & Brittain, E. (2023). Wearable Devices in Cardiovascular Medicine. Circulation research, 132(5), 652–670. https://doi.org/10.1161/CIRCRESAHA.122.322389
- Hurst, J. H., Brucker, A., Zhao, C., Driscoll, H., Hostetler, H. P., Phillips, M., Rosenberg, B., Samsky, M. D., Smith, I., Reller, M. E., Strouse, J. J., Zhou, C. K., Dores, G. M., Wong, H. L., & Goldstein, B. A. (2023). Use of Structured Electronic Health Records Data Elements for the Development of Computable Phenotypes to Identify Potential Adverse Events Associated with Intravenous Immunoglobulin Infusion. Drug safety, 10.1007/s40264-023-01276-6. Advance online publication. https://doi.org/10.1007/s40264-023-01276-6
- Kolls, B. J., Farooqui, I., Arulraja, E., Meek, L. A., & Sahgal, A. K. (2023). Using the ICH score during acute telestroke consults to triage transfer to tertiary centers. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 32(3), 106975. Advance online publication. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106975
- Konz, N., Buda, M., Gu, H., Saha, A., Yang, J., Chledowski, J., Park, J., Witowski, J., Geras, K. J., Shoshan, Y., Gilboa-Solomon, F., Khapun, D., Ratner, V., Barkan, E., Ozery-Flato, M., Martí, R., Omigbodun, A., Marasinou, C., Nakhaei, N., Hsu, W., … Mazurowski, M. A. (2023). A Competition, Benchmark, Code, and Data for Using Artificial Intelligence to Detect Lesions in Digital Breast Tomosynthesis. JAMA network open, 6(2), e230524. https://doi.org/10.1001/jamanetworkopen.2023.0524
- Konz, N., Dong, H., & Mazurowski, M. A. (2023). Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion. Medical image analysis, 87, 102836. https://doi.org/10.1016/j.media.2023.102836
- Ma, J. E., Lowe, J., Berkowitz, C., Kim, A., Togo, I., Musser, R. C., Fischer, J., Shah, K., Ibrahim, S., Bosworth, H. B., Totten, A. M., & Dolor, R. (2023). Provider Interaction With an Electronic Health Record Notification to Identify Eligible Patients for a Cluster Randomized Trial of Advance Care Planning in Primary Care: Secondary Analysis. Journal of medical Internet research, 25, e41884. https://doi.org/10.2196/41884
- Mariottoni, E. B., Datta, S., Shigueoka, L. S., Jammal, A. A., Tavares, I. M., Henao, R., Carin, L., & Medeiros, F. A. (2023). Deep Learning-Assisted Detection of Glaucoma Progression in Spectral-Domain OCT. Ophthalmology. Glaucoma, 6(3), 228–238. https://doi.org/10.1016/j.ogla.2022.11.004
- Marsolo, K. A., Weinfurt, K. P., Staman, K. L., & Hammill, B. G. (2023). Moving From Idealism to Realism With Data Sharing. Annals of internal medicine, 10.7326/M22-2973. Advance online publication. https://doi.org/10.7326/M22-2973
- May, J. T., Myers, J., Noonan, D., McConnell, E., & Cary, M. P. (2023). A call to action to improve the completeness of older adult sexual and gender minority data in electronic health records. Journal of the American Medical Informatics Association : JAMIA, ocad130. Advance online publication. https://doi.org/10.1093/jamia/ocad130
- Pasquale, D. K., Welsh, W., Olson, A., Yacoub, M., Moody, J., Barajas Gomez, B. A., Bentley-Edwards, K. L., McCall, J., Solis-Guzman, M. L., Dunn, J. P., Woods, C. W., Petzold, E. A., Bowie, A. C., Singh, K., & Huang, E. S. (2023). Scalable Strategies to Increase Efficiency and Augment Public Health Activities During Epidemic Peaks. Journal of public health management and practice : JPHMP, 10.1097/PHH.0000000000001780. Advance online publication. https://doi.org/10.1097/PHH.0000000000001780
- Pavon, J. M., Previll, L., Woo, M., Henao, R., Solomon, M., Rogers, U., Olson, A., Fischer, J., Leo, C., Fillenbaum, G., Hoenig, H., & Casarett, D. (2023). Machine learning functional impairment classification with electronic health record data. Journal of the American Geriatrics Society, 10.1111/jgs.18383. Advance online publication. https://doi.org/10.1111/jgs.18383
- Perakslis, E. D., Ranney, M. L., & Goldsack, J. C. (2023). Characterizing cyber harms from digital health. Nature medicine, 10.1038/s41591-022-02167-6. Advance online publication. https://doi.org/10.1038/s41591-022-02167-6
- Rao, V. N., Cyr, D., Wruck, L., Sanders, G., Hofmann, P., Rössig, L., Siedentop, H., Evers, T., Meyer, M., Paraschin, K., Nkulikiyinka, R., Parikh, K., & Felker, G. M. (2023). Electronic Health Record Characterization and Outcomes of Heart Failure with Preserved Ejection Fraction. American heart journal, S0002-8703(23)00100-X. Advance online publication. https://doi.org/10.1016/j.ahj.2023.04.013
- Samsa, G., Colborn, K., Olsen, M., Pomann, G. M., Grambow, S., Neely, M., & Troy, J. (2023). A Visual Tool to Help Develop a Statistical Analysis Plan for Randomized Trials in Palliative Care. Journal of pain and symptom management, 65(1), e87–e95. https://doi.org/10.1016/j.jpainsymman.2022.08.004
- Sandhu, S., Sendak, M. P., Ratliff, W., Knechtle, W., Fulkerson, W. J., Jr, & Balu, S. (2023). Accelerating health system innovation: principles and practices from the Duke Institute for Health Innovation. Patterns (New York, N.Y.), 4(4), 100710. https://doi.org/10.1016/j.patter.2023.100710
- Tan, A. L. M., Getzen, E. J., Hutch, M. R., Strasser, Z. H., Gutiérrez-Sacristán, A., Le, T. T., Dagliati, A., Morris, M., Hanauer, D. A., Moal, B., Bonzel, C. L., Yuan, W., Chiudinelli, L., Das, P., Zhang, H. G., Aronow, B. J., Avilllach, P., Brat, G. A., Cai, T., Hong, C., … COVID-19 by EHR 4CE Collaborative Group/Consortium (2023). Informative Missingness: What can we learn from patterns in missing laboratory data in the electronic health record?. Journal of biomedical informatics, 104306. Advance online publication. https://doi.org/10.1016/j.jbi.2023.104306
- Tanabe, P., Bosworth, H. B., Crawford, R. D., Glassberg, J., Miller, C. N., Paice, J. A., & Silva, S. (2023). Time to pain relief: A randomized controlled trial in the emergency department during vaso-occlusive episodes in sickle cell disease. European journal of haematology, 10.1111/ejh.13924. Advance online publication. https://doi.org/10.1111/ejh.13924
- Vassy, J. L., Posner, D. C., Ho, Y. L., Gagnon, D. R., Galloway, A., Tanukonda, V., Houghton, S. C., Madduri, R. K., McMahon, B. H., Tsao, P. S., Damrauer, S. M., O'Donnell, C. J., Assimes, T. L., Casas, J. P., Gaziano, J. M., Pencina, M. J., Sun, Y. V., Cho, K., & Wilson, P. W. F. (2023). Cardiovascular Disease Risk Assessment Using Traditional Risk Factors and Polygenic Risk Scores in the Million Veteran Program. JAMA cardiology, 8(6), 564–574. https://doi.org/10.1001/jamacardio.2023.0857
- Weissler, E. H., Hammill, B. G., Armstrong, J. L., Vekstein, A. M., Chodavadia, P., Long, C. A., Roe, M., & Hughes, G. C. (2023). Association Between Device Type and Type IIIb Endoleaks Following Thoracic Endovascular Aortic Repair. European journal of vascular and endovascular surgery: the official journal of the European Society for Vascular Surgery, 65(1), 112–119. https://doi.org/10.1016/j.ejvs.2022.10.005
- Wen, J., Zhang, X., Rush, E., Panickan, V. A., Li, X., Cai, T., Zhou, D., Ho, Y. L., Costa, L., Begoli, E., Hong, C., Gaziano, J. M., Cho, K., Lu, J., Liao, K. P., Zitnik, M., & Cai, T. (2023). Multimodal representation learning for predicting molecule-disease relations. Bioinformatics (Oxford, England), 39(2), btad085. https://doi.org/10.1093/bioinformatics/btad085
- Weng, J., Wildman-Tobriner, B., Buda, M., Yang, J., Ho, L. M., Allen, B. C., Ehieli, W. L., Miller, C. M., Zhang, J., & Mazurowski, M. A. (2023). Deep learning for classification of thyroid nodules on ultrasound: validation on an independent dataset. Clinical imaging, 99, 60–66. https://doi.org/10.1016/j.clinimag.2023.04.010
- Yang, J., Page, L. C., Wagner, L., Wildman-Tobriner, B., Bisset, L., Frush, D., & Mazurowski, M. A. (2023). Thyroid Nodules on Ultrasound in Children and Young Adults: Comparison of Diagnostic Performance of Radiologists' Impressions, ACR TI-RADS, and a Deep Learning Algorithm. AJR. American journal of roentgenology, 220(3), 408–417. https://doi.org/10.2214/AJR.22.28231
- Zaribafzadeh, H., Webster, W. L., Vail, C. J., Daigle, T., Kirk, A. D., Allen, P. J., Henao, R., & Buckland, D. M. (2023). Development, Deployment, and Implementation of a Machine Learning Surgical Case Length Prediction Model and Prospective Evaluation. Annals of surgery, 10.1097/SLA.0000000000005936. Advance online publication. https://doi.org/10.1097/SLA.0000000000005936
- Zhang, J., Mazurowski, M. A., & Grimm, L. J. (2023). Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record. European journal of radiology, 166, 110979. Advance online publication. https://doi.org/10.1016/j.ejrad.2023.110979
- Zhang, J., Mazurowski, M. A., Allen, B. C., & Wildman-Tobriner, B. (2023). Multistep Automated Data Labelling Procedure (MADLaP) for thyroid nodules on ultrasound: An artificial intelligence approach for automating image annotation. Artificial intelligence in medicine, 141, 102553. https://doi.org/10.1016/j.artmed.2023.102553
-
Adil, S. M., Elahi, C., Patel, D. N., Seas, A., Warman, P. I., Fuller, A. T., Haglund, M. M., & Dunn, T. W. (2022). Deep Learning to Predict Traumatic Brain Injury Outcomes in the Low-Resource Setting. World neurosurgery, S1878-8750(22)00244-3. Advance online publication. https://doi.org/10.1016/j.wneu.2022.02.097
-
Adil, S. M., Charalambous, L. T., Rajkumar, S., Seas, A., Warman, P. I., Murphy, K. R., Rahimpour, S., Parente, B., Dharmapurikar, R., Dunn, T. W., & Lad, S. P. (2022). Machine Learning to Predict Successful Opioid Dose Reduction or Stabilization After Spinal Cord Stimulation. Neurosurgery, 91(2), 272–279. https://doi.org/10.1227/neu.0000000000001969
-
Barnes, J. A., Eid, M. A., Moore, K., Aryal, S., Gebre, E., Woodard, J. N., Kitpanit, N., Mao, J., Kuwayama, D. P., Suckow, B. D., Schneider, D., Abushaikha, T., Zusterzeel, R., Vemulapalli, S., Shenkman, E. A., Williams, J., Sedrakyan, A., & Goodney, P. (2022). Use of real-world data and clinical registries to identify new uses of existing vascular endografts: combined use of GORE EXCLUDER Iliac Branch Endoprosthesis and GORE VIABAHN VBX Balloon Expandable Endoprosthesis. BMJ surgery, interventions, & health technologies, 4(1), e000085. https://doi.org/10.1136/bmjsit-2021-000085
-
Basch, E., Schrag, D., Henson, S., Jansen, J., Ginos, B., Stover, A. M., Carr, P., Spears, P. A., Jonsson, M., Deal, A. M., Bennett, A. V., Thanarajasingam, G., Rogak, L. J., Reeve, B. B., Snyder, C., Bruner, D., Cella, D., Kottschade, L. A., Perlmutter, J., Geoghegan, C., … Dueck, A. C. (2022). Effect of Electronic Symptom Monitoring on Patient-Reported Outcomes Among Patients With Metastatic Cancer: A Randomized Clinical Trial. JAMA, 327(24), 2413–2422. https://doi.org/10.1001/jama.2022.9265
-
Bauman, P. A., Doxey, A. C., Eberini, I., Islamovic, E., Jungo, F., Kessenich, C., Kough, J., Krishan, M., Palazzolo, L., Privalle, L., Rodriguez, C. E., Satchell, K., Silvanovich, A., & Pereira Mouriès, L. (2022). "From Protein Toxins to Applied Toxicological Testing" virtual workshop identifies the need for a bioinformatic framework to assess novel food protein safety. Regulatory toxicology and pharmacology : RTP, 131, 105146. https://doi.org/10.1016/j.yrtph.2022.105146
-
Bedoya, A. D., Economou-Zavlanos, N. J., Goldstein, B. A., Young, A., Jelovsek, J. E., O'Brien, C., Parrish, A. B., Elengold, S., Lytle, K., Balu, S., Huang, E., Poon, E. G., & Pencina, M. J. (2022). A framework for the oversight and local deployment of safe and high-quality prediction models. Journal of the American Medical Informatics Association : JAMIA, ocac078. Advance online publication. https://doi.org/10.1093/jamia/ocac078
-
Berchuck, S. I., Jammal, A. A., Page, D., Somers, T. J., & Medeiros, F. A. (2022). A Framework for Automating Psychiatric Distress Screening in Ophthalmology Clinics Using an EHR-Derived AI Algorithm. Translational vision science & technology, 11(10), 6. https://doi.org/10.1167/tvst.11.10.6
-
Berkowitz, S. J., Kwan, D., Cornish, T. C., Silver, E. L., Thullner, K. S., Aisen, A., Bui, M. M., Clark, S. D., Clunie, D. A., Eid, M., Hartman, D. J., Ho, K., Leontiev, A., Luviano, D. M., O'Toole, P. E., Parwani, A. V., Pereira, N. S., Rotemberg, V., Vining, D. J., Gaskin, C. M., Roth, C. J., Folio, L. R. (2022). Interactive Multimedia Reporting Technical Considerations: HIMSS-SIIM Collaborative White Paper. Journal of digital imaging, 10.1007/s10278-022-00658-z. Advance online publication. https://doi.org/10.1007/s10278-022-00658-z
-
Bhavsar, N. A., Yang, L. Z., Phelan, M., Shepherd-Banigan, M., Goldstein, B. A., Peskoe, S., Palta, P., Hirsch, J. A., Mitchell, N. S., Hirsch, A. G., Lunyera, J., Mohottige, D., Diamantidis, C. J., Maciejewski, M. L., & Boulware, L. E. (2022). Association between Gentrification and Health and Healthcare Utilization. Journal of urban health : bulletin of the New York Academy of Medicine, 10.1007/s11524-022-00692-w. Advance online publication. https://doi.org/10.1007/s11524-022-00692-w
-
Bodkin, N., Ross, M., McClain, M. T., Ko, E. R., Woods, C. W., Ginsburg, G. S., Henao, R., & Tsalik, E. L. (2022). Systematic comparison of published host gene expression signatures for bacterial/viral discrimination. Genome medicine, 14(1), 18. https://doi.org/10.1186/s13073-022-01025-x
-
Burns, L., Kalesnik-Orszulak, R., Spring, R., Zeegers, F., Rutstein, M., Hukkelhoven, M., Wruck, L., & O'Donnell, J. (2022). Real World-Evidence for Regulatory Use Decision Aid: An Interactive Tool To Inform Clinical Development and Regulatory Strategies. Advances in therapy, 1–7. Advance online publication. https://doi.org/10.1007/s12325-022-02257-4
-
Burns, C. M., Pung, L., Witt, D., Gao, M., Sendak, M., Balu, S., Krakower, D., Marcus, J. L., Okeke, N. L., & Clement, M. E. (2022). Development of an HIV Risk Prediction Model Using Electronic Health Record Data from an Academic Health System in the Southern United States. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, ciac775. Advance online publication. https://doi.org/10.1093/cid/ciac775
-
Cai, T., He, Z., Hong, C., Zhang, Y., Ho, Y. L., Honerlaw, J., Geva, A., Ayakulangara Panickan, V., King, A., Gagnon, D. R., Gaziano, M., Cho, K., Liao, K., & Cai, T. (2022). Scalable Relevance Ranking Algorithm via Semantic Similarity Assessment Improves Efficiency of Medical Chart Review. Journal of biomedical informatics, 104109. Advance online publication. https://doi.org/10.1016/j.jbi.2022.104109
-
Califf, R. M., Wong, C., Doraiswamy, P. M., Hong, D. S., Miller, D. P., Mega, J. L., & Baseline Study Group (2022). Biological and clinical correlates of the patient health questionnaire-9: exploratory cross-sectional analyses of the baseline health study. BMJ open, 12(1), e054741. https://doi.org/10.1136/bmjopen-2021-054741
-
Cao, S., Konz, N., Duncan, J., & Mazurowski, M. A. (2022). Deep Learning for Breast MRI Style Transfer with Limited Training Data. Journal of digital imaging, 10.1007/s10278-022-00755-z. Advance online publication. https://doi.org/10.1007/s10278-022-00755-z
-
Carrillo, G. A., Cohen-Wolkowiez, M., D'Agostino, E. M., Marsolo, K., Wruck, L. M., Johnson, L., Topping, J., Richmond, A., Corbie, G., & Kibbe, W. A. (2022). Standardizing, Harmonizing, and Protecting Data Collection to Broaden the Impact of COVID-19 Research: The Rapid Acceleration of Diagnostics-Underserved Populations (RADx-up) Initiative. Journal of the American Medical Informatics Association : JAMIA, ocac097. Advance online publication. https://doi.org/10.1093/jamia/ocac097
-
Chen, W. C., Boreta, L., Braunstein, S. E., Rabow, M. W., Kaplan, L. E., Tenenbaum, J. D., Morin, O., Park, C. C., & Hong, J. C. (2022). Association of mental health diagnosis with race and all-cause mortality after a cancer diagnosis: Large-scale analysis of electronic health record data. Cancer, 128(2), 344–352. https://doi.org/10.1002/cncr.33903
-
Chen, Z., Zhang, H., George, T. J., Guo, Y., Prosperi, M., Guo, J., Braithwaite, D., Wang, F., Kibbe, W., Wagner, L., & Bian, J. (2022). Simulating Colorectal Cancer Trials Using Real-World Data. JCO clinical cancer informatics, 6, e2100195. https://doi.org/10.1200/CCI.21.00195
-
Cerrato, P., Halamka, J., & Pencina, M. (2022). A proposal for developing a platform that evaluates algorithmic equity and accuracy. BMJ health & care informatics, 29(1), e100423. https://doi.org/10.1136/bmjhci-2021-100423
-
Cho, P. J., Yi, J., Ho, E., Shandhi, M., Dinh, Y., Patil, A., Martin, L., Singh, G., Bent, B., Ginsburg, G., Smuck, M., Woods, C., Shaw, R., & Dunn, J. (2022). Demographic Imbalances Resulting From the Bring-Your-Own-Device Study Design. JMIR mHealth and uHealth, 10(4), e29510. https://doi.org/10.2196/29510
-
Choi, H. H., Kotsenas, A. L., Chen, J. V., Bronsky, C., Roth, C. J., & Kohli, M. D. (2022). Multi-institutional Experience with Patient Image Access Through Electronic Health Record Patient Portals. Journal of digital imaging, 35(2), 320–326. https://doi.org/10.1007/s10278-021-00565-9
-
Cerrato P, Halamka J, Pencina M. A proposal for developing a platform that evaluates algorithmic equity and accuracy. BMJ Health Care Inform. 2022 Apr;29(1):e100423. doi: 10.1136/bmjhci-2021-100423. PMID: 35410952; PMCID: PMC9003600.
-
Corbie, G., D'Agostino, E. M., Knox, S., Richmond, A., Woods, C. W., Dave, G., Perreira, K. M., Marsolo, K., Wruck, L. M., Kibbe, W. A., & Cohen-Wolkowiez, M. (2022). RADx-UP Coordination and Data Collection: An Infrastructure for COVID-19 Testing Disparities Research. American journal of public health, 112(S9), S858–S863. https://doi.org/10.2105/AJPH.2022.306953
-
Daye, D., Wiggins, W. F., Lungren, M. P., Alkasab, T., Kottler, N., Allen, B., Roth, C. J., Bizzo, B. C., Durniak, K., Brink, J. A., Larson, D. B., Dreyer, K. J., & Langlotz, C. P. (2022). Implementation of Clinical Artificial Intelligence in Radiology: Who Decides and How?. Radiology, 212151. Advance online publication. https://doi.org/10.1148/radiol.212151
-
Desai, M., Boulos, M., Pomann, G. M., Steinberg, G. K., Longo, F. M., Leonard, M., Montine, T., Blomkalns, A. L., & Harrington, R. A. (2022). Establishing a Data Science Unit in an Academic Medical Center: An Illustrative Model. Academic medicine : journal of the Association of American Medical Colleges, 97(1), 69–75. https://doi.org/10.1097/ACM.0000000000004079
-
Dov, D., Assaad, S., Syedibrahim, A., Bell, J., Huang, J., Madden, J., Bentley, R., McCall, S., Henao, R., Carin, L., & Foo, W. C. (2022). A Hybrid Human-Machine Learning Approach for Screening Prostate Biopsies Can Improve Clinical Efficiency Without Compromising Diagnostic Accuracy. Archives of pathology & laboratory medicine, 146(6), 727–734. https://doi.org/10.5858/arpa.2020-0850-OA
Dov, D., Kovalsky, S. Z., Feng, Q., Assaad, S., Cohen, J., Bell, J., Henao, R., Carin, L., & Range, D. E. (2022). Use of Machine Learning-Based Software for the Screening of Thyroid Cytopathology Whole Slide Images. Archives of pathology & laboratory medicine, 146(7), 872–878. https://doi.org/10.5858/arpa.2020-0712-OA
-
Draelos RL, Ezekian JE, Zhuang F, Moya-Mendez ME, Zhang Z, Rosamilia MB, Manivannan PKR, Henao R, Landstrom AP. GENESIS: Gene-Specific Machine Learning Models for Variants of Uncertain Significance Found in Catecholaminergic Polymorphic Ventricular Tachycardia and Long QT Syndrome-Associated Genes. Circ Arrhythm Electrophysiol. 2022 Apr;15(4):e010326. doi: 10.1161/CIRCEP.121.010326. Epub 2022 Mar 31. PMID: 35357185; PMCID: PMC9018586.
-
Draelos, R. L., & Carin, L. (2022). Explainable multiple abnormality classification of chest CT volumes. Artificial intelligence in medicine, 132, 102372. https://doi.org/10.1016/j.artmed.2022.102372
-
Drozda, J. P., Jr, Graham, J., Muhlestein, J. B., Tcheng, J. E., Roach, J., Forsyth, T., Knight, S., McKinnon, A., May, H., Wilson, N. A., Berlin, J. A., & Simard, E. P. (2022). Multi-institutional distributed data networks for real-world evidence about medical devices: building unique device identifiers into longitudinal data (BUILD). JAMIA open, 5(2), ooac035. https://doi.org/10.1093/jamiaopen/ooac035
-
Eckhoff, A. M., Connor, A. A., Thacker, J., Blazer, D. G., Moore, H. G., Scheri, R. P., Lagoo-Deenadayalan, S. A., Harpole, D. H., Seymour, K. A., Purves, J. T., Ravindra, K. V., Southerland, K. W., Rocke, D. J., Gilner, J. B., Parker, D. C., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O. R., Corcoran, D. L., Modliszewski, J. L., … Hwang, E. S. (2022). A Multidimensional Bioinformatic Platform for the Study of Human Response to Surgery. Annals of surgery, 10.1097/SLA.0000000000005429. Advance online publication. https://doi.org/10.1097/SLA.0000000000005429
-
Eisenstein, E. L., Sapp, S., Harding, T., Harrington, A., Velazquez, E. J., Mentz, R. J., Greene, S. J., Sachdev, V., Kim, D. Y., & Anstrom, K. J. (2022). Ascertaining Death Events in a Pragmatic Clinical Trial: Insights From the TRANSFORM-HF Trial. Journal of cardiac failure, S1071-9164(22)00054-9. Advance online publication. https://doi.org/10.1016/j.cardfail.2022.01.02
-
Eisenstein, E. L., Walden, A., Donovan, K., Zozus, M. N., Yu, F. B., Jr, West, V. L., Hammond, W. E., & Muhlbaier, L. H. (2022). Economic analysis of a single institutional review board data exchange standard in multisite clinical studies. Contemporary clinical trials, 106953. Advance online publication. https://doi.org/10.1016/j.cct.2022.106953
-
Erickson, M. L., Wang, W., Counts, J., Redman, L. M., Parker, D., Huebner, J. L., Dunn, J., & Kraus, W. E. (2022). Field-Based Assessments of Behavioral Patterns During Shiftwork in Police Academy Trainees Using Wearable Technology. Journal of biological rhythms, 7487304221087068. Advance online publication. https://doi.org/10.1177/07487304221087068
-
Facile, R., Muhlbradt, E. E., Gong, M., Li, Q., Popat, V., Pétavy, F., Cornet, R., Ruan, Y., Koide, D., Saito, T. I., Hume, S., Rockhold, F., Bao, W., Dubman, S., & Jauregui Wurst, B. (2022). Use of Clinical Data Interchange Standards Consortium (CDISC) Standards for Real-world Data: Expert Perspectives From a Qualitative Delphi Survey. JMIR medical informatics, 10(1), e30363. https://doi.org/10.2196/30363
-
Finnegan, A., Potenziani, D. D., Karutu, C., Wanyana, I., Matsiko, N., Elahi, C., Mijumbi, N., Stanley, R., & Vota, W. (2022). Deploying machine learning with messy, real world data in low- and middle-income countries: Developing a global health use case. Frontiers in big data, 5, 553673. https://doi.org/10.3389/fdata.2022.553673
-
Gallagher, D., Greenland, M., Lindquist, D., Sadolf, L., Scully, C., Knutsen, K., Zhao, C., Goldstein, B. A., & Burgess, L. (2022). Inpatient pharmacists using a readmission risk model in supporting discharge medication reconciliation to reduce unplanned hospital readmissions: a quality improvement intervention. BMJ open quality, 11(1), e001560. https://doi.org/10.1136/bmjoq-2021-001560
-
Goergen, C. J., Tweardy, M. J., Steinhubl, S. R., Wegerich, S. W., Singh, K., Mieloszyk, R. J., & Dunn, J. (2022). Detection and Monitoring of Viral Infections via Wearable Devices and Biometric Data. Annual review of biomedical engineering, 24, 1–27. https://doi.org/10.1146/annurev-bioeng-103020-040136
-
Goldstein, B. A., Mazurowski, M. A., & Li, C. (2022). The Need for Targeted Labeling of Machine Learning-Based Software as a Medical Device. JAMA network open, 5(11), e2242351. https://doi.org/10.1001/jamanetworkopen.2022.42351
-
Gonzales, S., Okusaga, O. O., Reuteman-Fowler, J. C., Oakes, M. M., Brown, J. N., Moore, S., Lewinski, A. A., Rodriguez, C., Moncayo, N., Smith, V. A., Malone, S., List, J., Cho, R. Y., Jeffreys, A. S., & Bosworth, H. B. (2022). Digital Medicine System in Veterans With Severe Mental Illness: Feasibility and Acceptability Study. JMIR formative research, 6(12), e34893. https://doi.org/10.2196/34893
-
Hammill, B. G., Leimberger, J. D., Lampron, Z., Raman, S. R., O'Brien, E. C., Wurst, K. E., Mountcastle, S., Cunnington, M., Janmohamed, S., & Curtis, L. H. (2022). Fitness of real-world data for clinical trial data collection: Results and lessons from a HARMONY Outcomes ancillary study. Clinical trials (London, England), 17407745221114298. Advance online publication. https://doi.org/10.1177/17407745221114298
-
Hammond, W. E., Bent, B., & West, V. L. (2022). Goodbye Electronic Health Record?. Studies in health technology and informatics, 298, 107–111. https://doi.org/10.3233/SHTI220917
-
Henson, J. B., Wegermann, K., Patel, Y. A., Wilder, J. M., & Muir, A. J. (2022). Access to technology to support telehealth in areas without specialty care for liver disease. Hepatology (Baltimore, Md.), 10.1002/hep.32597. Advance online publication. https://doi.org/10.1002/hep.32597
-
Herbert, C., Shi, Q., Kheterpal, V., Nowak, C., Suvarna, T., Durnan, B., Schrader, S., Behar, S., Naeem, S., Tarrant, S., Kalibala, B., Singh, A., Gerber, B., Barton, B., Lin, H., Cohen-Wolkowiez, M., Corbie-Smith, G., Kibbe, W., Marquez, J., Baek, J., … Soni, A. (2022). Use of a Digital Assistant to Report COVID-19 Rapid Antigen Self-test Results to Health Departments in 6 US Communities. JAMA network open, 5(8), e2228885. https://doi.org/10.1001/jamanetworkopen.2022.28885
-
Howard-Anderson, J., Hamasaki, T., Dai, W., Collyar, D., Rubin, D., Nambiar, S., Kinamon, T., Hill, C., Gelone, S. P., Mariano, D., Baba, T., Holland, T. L., Doernberg, S. B., Chambers, H. F., Fowler, V. G., Evans, S. R., & Boucher, H. W. (2022). Improving Traditional Registrational Trial Endpoints: Development and Application of a Desirability of Outcome Ranking (DOOR) Endpoint for Complicated Urinary Tract Infection Clinical Trials. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, ciac692. Advance online publication. https://doi.org/10.1093/cid/ciac692
-
Hurst, J. H., Zhao, C., Hostetler, H. P., Ghiasi Gorveh, M., Lang, J. E., & Goldstein, B. A. (2022). Environmental and clinical data utility in pediatric asthma exacerbation risk prediction models. BMC medical informatics and decision making, 22(1), 108. https://doi.org/10.1186/s12911-022-01847-0
-
Irzmański, R., Glowczynska, R., Banach, M., Szalewska, D., Piotrowicz, R., Kowalik, I., Pencina, M. J., Zareba, W., Orzechowski, P., Pluta, S., Kalarus, Z., Opolski, G., & Piotrowicz, E. (2022). Prognostic Impact of Hybrid Comprehensive Telerehabilitation Regarding Diastolic Dysfunction in Patients with Heart Failure with Reduced Ejection Fraction-Subanalysis of the TELEREH-HF Randomized Clinical Trial. Journal of clinical medicine, 11(7), 1844. https://doi.org/10.3390/jcm11071844
-
Jones, W. S., Wruck, L. M., Harrington, R. A., & Hernandez, A. F. (2022). Iterative approaches to the use of electronic health records data for large pragmatic studies. Contemporary clinical trials, 117, 106789. https://doi.org/10.1016/j.cct.2022.106789
-
Karlovich, N. S., Sata, S. S., Griffith, B., Coop, A., Kalu, I. C., Engemann, J. J., Seidelman, J., Turner, N. A., Polage, C. R., Smith, B. A., & Lewis, S. S. (2022). In pursuit of the holy grail: Improving C. difficile testing appropriateness with iterative electronic health record clinical decision support and targeted test restriction. Infection control and hospital epidemiology, 43(7), 840–847. https://doi.org/10.1017/ice.2021.228
-
Katsanis, S. H., Claes, P., Doerr, M., Cook-Deegan, R., Tenenbaum, J. D., Evans, B. J., Lee, M. K., Anderton, J., Weinberg, S. M., & Wagner, J. K. (2022). U.S. Adult Perspectives on Facial Images, DNA, and Other Biometrics. IEEE transactions on technology and society, 3(1), 9–15. https://doi.org/10.1109/tts.2021.3120317
-
Khan, S. S., Page, C., Wojdyla, D. M., Schwartz, Y. Y., Greenland, P., & Pencina, M. J. (2022). Predictive Utility of a Validated Polygenic Risk Score for Long-Term Risk of Coronary Heart Disease in Young and Middle-Aged Adults. Circulation, 146(8), 587–596. https://doi.org/10.1161/CIRCULATIONAHA.121.058426
-
Kiernan, D., Carton, T., Toh, S., Phua, J., Zirkle, M., Louzao, D., Haynes, K., Weiner, M., Angulo, F., Bailey, C., Bian, J., Fort, D., Grannis, S., Krishnamurthy, A. K., Nair, V., Rivera, P., Silverstein, J., & Marsolo, K. (2022). Establishing a framework for privacy-preserving record linkage among electronic health record and administrative claims databases within PCORnet®, the National Patient-Centered Clinical Research Network. BMC research notes, 15(1), 337. https://doi.org/10.1186/s13104-022-06243-5
-
King, R. J., Heisey-Grove, D. M., Garrett, N., Scott, K. A., Daley, M. F., Haemer, M. A., Podila, P., Block, J. P., Carton, T., Gregorowicz, A. J., Mork, K. P., Porter, R. M., Chudnov, D. L., Jellison, J., Kraus, E. M., Harrison, M. R., Sucosky, M. S., Armstrong, S., & Goodman, A. B. (2022). The Childhood Obesity Data Initiative: A Case Study in Implementing Clinical-Community Infrastructure Enhancements to Support Health Services Research and Public Health. Journal of public health management and practice : JPHMP, 28(2), E430–E440. https://doi.org/10.1097/PHH.0000000000001419
-
Ko, E. R., Henao, R., Frankey, K., Petzold, E. A., Isner, P. D., Jaehne, A. K., Allen, N., Gardner-Gray, J., Hurst, G., Pflaum-Carlson, J., Jayaprakash, N., Rivers, E. P., Wang, H., Ugalde, I., Amanullah, S., Mercurio, L., Chun, T. H., May, L., Hickey, R. W., Lazarus, J. E.,… Antibacterial Resistance Leadership Group(2022). Prospective Validation of a Rapid Host Gene Expression Test to Discriminate Bacterial From Viral Respiratory Infection. JAMA network open, 5(4), e227299. https://doi.org/10.1001/jamanetworkopen.2022.7299
-
Koshkin, V. S., Patel, V. G., Ali, A., Bilen, M. A., Ravindranathan, D., Park, J. J., Kellezi, O., Cieslik, M., Shaya, J., Cabal, A., Brown, L., Labriola, M., Graham, L. S., Pritchard, C., Tripathi, A., Nusrat, S., Barata, P., Jang, A., Chen, S. R., Garje, R., … McKay, R. (2022). PROMISE: a real-world clinical-genomic database to address knowledge gaps in prostate cancer. Prostate cancer and prostatic diseases, 25(3), 388–396. https://doi.org/10.1038/s41391-021-00433-1
-
Kraus, V., Sisi, M., Tourani, R., Fillenbaum, G., Burchett, B., Parker, D., Kraus, W. E., Connelly, M., Otvos, J., Cohen, H., Orenduff, M., Pieper, C., Zhang, X., Aliferis, C. (2022). Causal analysis identifies small HDL particles and physical activity as key determinants of longevity of older adults. eBioMedicine, v85, 104292. DOI: https://doi.org/10.1016/j.ebiom.2022.104292
-
Li, M., Zhang, X., Ang, K. S., Ling, J., Sethi, R., Lee, N., Ginhoux, F., & Chen, J. (2022). DISCO: a database of Deeply Integrated human Single-Cell Omics data. Nucleic acids research, 50(D1), D596–D602. https://doi.org/10.1093/nar/gkab1020
-
Lam, S., Zaribafzadeh, H., Ang, B. Y., Webster, W., Buckland, D., Mantyh, C., & Tan, H. K. (2022). Estimation of Surgery Durations Using Machine Learning Methods-A Cross-Country Multi-Site Collaborative Study. Healthcare (Basel, Switzerland), 10(7), 1191. https://doi.org/10.3390/healthcare10071191
-
Lian, T., Reid, H., Rader, A., Dewitt-Feldman, S., Hezarkhani, E., Gu, E., Scott, M., Kutzer, K., Sandhu, S., Crowder, C., Ito, K., Eisenson, H., Bettger, J. P., Shaw, R. J., Lewinski, A. A., Ming, D. Y., Bosworth, H. B., Zullig, L. L., Batch, B. C., & Drake, C. (2022). A Tailored SMS Text Message-Based Intervention to Facilitate Patient Access to Referred Community-Based Social Needs Resources: Protocol for a Pilot Feasibility and Acceptability Study. JMIR research protocols, 11(10), e37316. https://doi.org/10.2196/37316
-
Liang, C., Weissman, S., Olatosi, B., Poon, E. G., Yarrington, M. E., & Li, X. (2022). Curating a knowledge base for individuals with coinfection of HIV and SARS-CoV-2: a study protocol of EHR-based data mining and clinical implementation. BMJ open, 12(9), e067204. https://doi.org/10.1136/bmjopen-2022-067204
-
Lindsay, M. R., & Lytle, K. (2022). Implementing Best Practices to Redesign Workflow and Optimize Nursing Documentation in the Electronic Health Record. Applied clinical informatics, 13(3), 711–719. https://doi.org/10.1055/a-1868-6431
-
Malcolm, E. J., Brandon, Z., Wilson, L. E., Shoup, J. P., King, H. A., Lewinski, A., Greiner, M. A., Malone, S., Miller, J., Keenan, R. T., Tarrant, T. K., Phinney, D., Cho, A., Bosworth, H. B., & Shah, K. (2022). eConsults’ Impact on Care Access and Wait Times in Rheumatology. Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases, 10.1097/RHU.0000000000001825. Advance online publication. https://doi.org/10.1097/RHU.0000000000001825
-
Mague, S. D., Talbot, A., Blount, C., Walder-Christensen, K. K., Duffney, L. J., Adamson, E., Bey, A. L., Ndubuizu, N., Thomas, G. E., Hughes, D. N., Grossman, Y., Hultman, R., Sinha, S., Fink, A. M., Gallagher, N. M., Fisher, R. L., Jiang, Y. H., Carlson, D. E., & Dzirasa, K. (2022). Brain-wide electrical dynamics encode individual appetitive social behavior. Neuron, 110(10), 1728–1741.e7. https://doi.org/10.1016/j.neuron.2022.02.016
-
Mariottoni, E. B., Datta, S., Shigueoka, L. S., Jammal, A. A., Tavares, I. M., Henao, R., Carin, L., & Medeiros, F. A. (2022). Deep Learning Assisted Detection of Glaucoma Progression in Spectral-Domain Optical Coherence Tomography. Ophthalmology. Glaucoma, S2589-4196(22)00229-0. Advance online publication. https://doi.org/10.1016/j.ogla.2022.11.004
-
Miller, H. N., Voils, C. I., Cronin, K. A., Jeanes, E., Hawley, J., Porter, L. S., Adler, R. R., Sharp, W., Pabich, S., Gavin, K. L., Lewis, M. A., Johnson, H. M., Yancy, W. S., Jr, Gray, K. E., & Shaw, R. J. (2022). A Method to Deliver Automated and Tailored Intervention Content: 24-month Clinical Trial. JMIR formative research, 6(9), e38262. https://doi.org/10.2196/38262
-
Modi, N. D., Abuhelwa, A. Y., McKinnon, R. A., Boddy, A. V., Haseloff, M., Wiese, M. D., Hoffmann, T. C., Perakslis, E. D., Rowland, A., Sorich, M. J., & Hopkins, A. M. (2022). Audit of Data Sharing by Pharmaceutical Companies for Anticancer Medicines Approved by the US Food and Drug Administration. JAMA oncology, 10.1001/jamaoncol.2022.2867. Advance online publication. https://doi.org/10.1001/jamaoncol.2022.2867
-
Morain, S. R., Bollinger, J., Weinfurt, K., & Sugarman, J. (2022). Ethics challenges in sharing data from pragmatic clinical trials. Clinical trials (London, England), 19(6), 681–689. https://doi.org/10.1177/17407745221110881
-
Moris, D., Henao, R., Hensman, H., Stempora, L., Chasse, S., Schobel, S., Dente, C. J., Kirk, A. D., & Elster, E. (2022). Multidimensional machine learning models predicting outcomes after trauma. Surgery, S0039-6060(22)00595-5. Advance online publication. https://doi.org/10.1016/j.surg.2022.08.007
-
Movaghar, A., Page, D., Brilliant, M., & Mailick, M. (2022). Advancing artificial intelligence-assisted pre-screening for fragile X syndrome. BMC medical informatics and decision making, 22(1), 152. https://doi.org/10.1186/s12911-022-01896-5
-
Neely, B., Shahsahebi, M., Marks, C. E., Power, S., Kanter, A., Howell, C., Hyslop, T., & Plichta, J. K. (2022). Design and Evaluation of a Computational Phenotype to Identify Patients With Metastatic Breast Cancer Within the Electronic Health Record. JCO clinical cancer informatics, 6, e2200056. https://doi.org/10.1200/CCI.22.00056
-
Ni, Z., Wu, B., Yang, Q., Yan, L. L., Liu, C., & Shaw, R. J. (2022). An mHealth Intervention to Improve Medication Adherence and Health Outcomes Among Patients With Coronary Heart Disease: Randomized Controlled Trial. Journal of medical Internet research, 24(3), e27202. https://doi.org/10.2196/27202
-
Ning, Y., Ong, M., Chakraborty, B., Goldstein, B. A., Ting, D., Vaughan, R., & Liu, N. (2022). Shapley variable importance cloud for interpretable machine learning. Patterns (New York, N.Y.), 3(4), 100452. https://doi.org/10.1016/j.patter.2022.100452
-
O'Brien, E. C., Mulder, H., Jones, W. S., Hammill, B. G., Sharlow, A., Hernandez, A. F., & Curtis, L. H. (2022). Concordance Between Patient-Reported Health Data and Electronic Health Data in the ADAPTABLE Trial. JAMA cardiology, 10.1001/jamacardio.2022.3844. Advance online publication. https://doi.org/10.1001/jamacardio.2022.3844
-
Padhee, S., Nave, G. K., Jr, Banerjee, T., Abrams, D. M., & Shah, N. (2022). Improving Pain Assessment Using Vital Signs and Pain Medication for Patients With Sickle Cell Disease: Retrospective Study. JMIR formative research, 6(6), e36998. https://doi.org/10.2196/36998
-
Patel, R., Wee, S. N., Ramaswamy, R., Thadani, S., Tandi, J., Garg, R., Calvanese, N., Valko, M., Rush, A. J., Rentería, M. E., Sarkar, J., & Kollins, S. H. (2022). NeuroBlu, an electronic health record (EHR) trusted research environment (TRE) to support mental healthcare analytics with real-world data. BMJ open, 12(4), e057227. https://doi.org/10.1136/bmjopen-2021-057227
-
Perakslis E. D. (2022). Beyond privacy: A deeper understanding of the internet is required to protect digitized trial participants. Contemporary clinical trials, 118, 106786. Advance online publication. https://doi.org/10.1016/j.cct.2022.106786
-
Perakslis E. (2022). Responding to the Escalating Cybersecurity Threat to Health Care. The New England journal of medicine, 387(9), 767–770. https://doi.org/10.1056/NEJMp2205144
-
Piotrowicz, E., Mierzyńska, A., Jaworska, I., Opolski, G., Banach, M., Zaręba, W., Kowalik, I., Pencina, M., Orzechowski, P., Szalewska, D., Pluta, S., Glowczynska, R., Kalarus, Z., Irzmanski, R., & Piotrowicz, R. (2022). Relationship between physical capacity and depression in heart failure patients undergoing hybrid comprehensive telerehabilitation vs. usual care: subanalysis from the TELEREH-HF Randomized Clinical Trial. European journal of cardiovascular nursing, zvab125. Advance online publication. https://doi.org/10.1093/eurjcn/zvab125
-
Portella, J., Andonian, B. J., Brown, D., Mansur, J., Wales, D., West, V., Kraus, W. E., & Hammond, W. E. (2022). Using Machine Learning to Identify Organ System Specific Limitations to Exercise Via Cardiopulmonary Exercise Testing. IEEE journal of biomedical and health informatics, PP, 10.1109/JBHI.2022.3163402. Advance online publication. https://doi.org/10.1109/JBHI.2022.3163402
-
Raman, S. R., O’Brien, E. C., Hammill, B. G., Nelson, A. J., Fish, L. J., Curtis, L. H., & Marsolo, K. (2022). Evaluating fitness-for-use of electronic health records in pragmatic clinical trials: reported practices and recommendations. Journal of the American Medical Informatics Association : JAMIA, ocac004. Advance online publication. https://doi.org/10.1093/jamia/ocac004
-
Reading Turchioe, M., Volodarskiy, A., Pathak, J., Wright, D. N., Tcheng, J. E., & Slotwiner, D. (2022). Systematic review of current natural language processing methods and applications in cardiology. Heart (British Cardiac Society), 108(12), 909–916. https://doi.org/10.1136/heartjnl-2021-319769
-
Richardson, A., Robbins, C. B., Wisely, C. E., Henao, R., Grewal, D. S., & Fekrat, S. (2022). Artificial intelligence in dementia. Current opinion in ophthalmology, 33(5), 425–431. https://doi.org/10.1097/ICU.0000000000000881
-
Rhon, D. I., Fritz, J. M., Kerns, R. D., McGeary, D. D., Coleman, B. C., Farrokhi, S., Burgess, D. J., Goertz, C. M., Taylor, S. L., & Hoffmann, T. (2022). TIDieR-telehealth: precision in reporting of telehealth interventions used in clinical trials - unique considerations for the Template for the Intervention Description and Replication (TIDieR) checklist. BMC medical research methodology, 22(1), 161. https://doi.org/10.1186/s12874-022-01640-7
-
Roth, C. J., Harten, H. H., Dewey, M., & Dennison, D. K. (2022). How Image Exchange Breaks Down: the Image Library Perspective. Journal of digital imaging, 10.1007/s10278-022-00684-x. Advance online publication. https://doi.org/10.1007/s10278-022-00684-x
-
Sabharwal, P., Hurst, J. H., Tejwani, R., Hobbs, K. T., Routh, J. C., & Goldstein, B. A. (2022). Combining adult with pediatric patient data to develop a clinical decision support tool intended for children: leveraging machine learning to model heterogeneity. BMC medical informatics and decision making, 22(1), 84. https://doi.org/10.1186/s12911-022-01827-4
-
Sabharwal, P., Hurst, J. H., Tejwani, R., Hobbs, K. T., Routh, J. C., & Goldstein, B. A. (2022). Correction to: Combining adult with pediatric patient data to develop a clinical decision support tool intended for children: leveraging machine learning to model heterogeneity. BMC medical informatics and decision making, 22(1), 128. https://doi.org/10.1186/s12911-022-01846-1
-
Saffari, S. E., Volovici, V., Ong, M., Goldstein, B. A., Vaughan, R., Dammers, R., Steyerberg, E. W., & Liu, N. (2022). Proper Use of Multiple Imputation and Dealing with Missing Covariate Data. World neurosurgery, 161, 284–290. https://doi.org/10.1016/j.wneu.2021.10.090
-
Satyadev, N., Warman, P. I., Seas, A., Kolls, B. J., Haglund, M. M., Fuller, A. T., & Dunn, T. W. (2022). Machine Learning for Predicting Discharge Disposition After Traumatic Brain Injury. Neurosurgery, 10.1227/neu.0000000000001911. Advance online publication. https://doi.org/10.1227/neu.0000000000001911
-
Sayeed, S., Califf, R., Green, R., Wong, C., Mahaffey, K., Gambhir, S. S., Mega, J., Patrick-Lake, B., Frazier, K., Pignone, M., Hernandez, A., Shah, S. H., Fan, A. C., Krüg, S., Shaack, T., Shore, S., Spielman, S., Eckstrand, J., Wong, C. A., & Project Baseline Health Study Research Group (2021). Return of individual research results: What do participants prefer and expect?. PloS one, 16(7), e0254153. https://doi.org/10.1371/journal.pone.0254153
-
Shakya, S., Prevett, J., Hu, X., & Xiao, R. (2022). Characterization of Parkinson's Disease Subtypes and Related Attributes. Frontiers in neurology, 13, 810038. https://doi.org/10.3389/fneur.2022.810038
-
Shandhi, M., Cho, P. J., Roghanizad, A. R., Singh, K., Wang, W., Enache, O. M., Stern, A., Sbahi, R., Tatar, B., Fiscus, S., Khoo, Q. X., Kuo, Y., Lu, X., Hsieh, J., Kalodzitsa, A., Bahmani, A., Alavi, A., Ray, U., Snyder, M. P., Ginsburg, G. S., … Dunn, J. P. (2022). A method for intelligent allocation of diagnostic testing by leveraging data from commercial wearable devices: a case study on COVID-19. NPJ digital medicine, 5(1), 130. https://doi.org/10.1038/s41746-022-00672-z
-
Shandhi, M. M. H., & Dunn, J. P. (2022). AI in medicine: Where are we now and where are we going?. Cell reports. Medicine, 3(12), 100861. https://doi.org/10.1016/j.xcrm.2022.100861
-
Shaw, R. J., Boazak, M., Tiase, V., Porter, G., Wosik, J., Bumatay, S., Michaels, L., Stone, J., Cohen, D., & Dolor, R. (2022). Integrating Patient-generated Digital Health Data into Electronic Health Records (EHRs) in Ambulatory Care Settings: EHR Vendor Survey and Interviews. AMIA ... Annual Symposium proceedings. AMIA Symposium, 2022, 439–445.
-
Shropshire, W. C., Dinh, A. Q., Earley, M., Komarow, L., Panesso, D., Rydell, K., Gómez-Villegas, S. I., Miao, H., Hill, C., Chen, L., Patel, R., Fries, B. C., Abbo, L., Cober, E., Revolinski, S., Luterbach, C. L., Chambers, H., Fowler, V. G., Jr, Bonomo, R. A., Shelburne, S. A., … Arias, C. A. (2022). Accessory Genomes Drive Independent Spread of Carbapenem-Resistant Klebsiella pneumoniae Clonal Groups 258 and 307 in Houston, TX. mBio, 13(2), e0049722. https://doi.org/10.1128/mbio.00497-22
-
Smith, I. D., Coles, T. M., Howe, C., Overton, R., Economou-Zavlanos, N., Solomon, M. J., Zhao, R., Adagarla, B., Doss, J., Henao, R., Clowse, M., & Leverenz, D. L. (2022). Telehealth Made EASY: Understanding Provider Perceptions of Telehealth Appropriateness in Outpatient Rheumatology Encounters. ACR open rheumatology, 10.1002/acr2.11470. Advance online publication. https://doi.org/10.1002/acr2.11470
-
Stilwell, L., Golonka, M., Ankoma-Sey, K., Yancy, M., Kaplan, S., Terrell, L., & Gifford, E. J. (2022). Electronic Health Record Tools to Identify Child Maltreatment: Scoping Literature Review and Key Informant Interviews. Academic pediatrics, 22(5), 718–728. https://doi.org/10.1016/j.acap.2022.01.017
-
Stolte, A., Merli, M. G., Hurst, J. H., Liu, Y., Wood, C. T., & Goldstein, B. A. (2022). Using Electronic Health Records to understand the population of local children captured in a large health system in Durham County, NC, USA, and implications for population health research. Social science & medicine (1982), 296, 114759. https://doi.org/10.1016/j.socscimed.2022.114759
-
Subramaniam, A., Hensley, E., Stojancic, R., Vaughn, J., & Shah, N. (2022). Careful considerations for mHealth app development: lessons learned from QuestExplore. mHealth, 8, 24. https://doi.org/10.21037/mhealth-21-51
-
Szarfman, A., Levine, J. G., Tonning, J. M., Weichold, F., Bloom, J. C., Soreth, J. M., Geanacopoulos, M., Callahan, L., Spotnitz, M., Ryan, Q., Pease-Fye, M., Brownstein, J. S., Ed Hammond, W., Reich, C., & Altman, R. B. (2022). Recommendations for achieving interoperable and shareable medical data in the USA. Communications medicine, 2, 86. https://doi.org/10.1038/s43856-022-00148-x
-
Tan, B. W. L., Tan, B. W. Q., Tan, A. L. M., Schriver, E. R., Gutiérrez-Sacristán, A., Das, P., Yuan, W., Hutch, M. R., García Barrio, N., Pedrera Jimenez, M., Abu-El-Rub, N., Morris, M., Moal, B., Verdy, G., Cho, K., Ho, Y. L., Patel, L. P., Dagliati, A., Neuraz, A., Klann, J. G., Hong, C., … Consortium for Clinical Characterization of COVID-19 by EHR (4CE) (2022). Long-term kidney function recovery and mortality after COVID-19-associated acute kidney injury: An international multi-centre observational cohort study. EClinicalMedicine, 55, 101724. https://doi.org/10.1016/j.eclinm.2022.101724
-
Tanguay-Sela, M., Benrimoh, D., Popescu, C., Perez, T., Rollins, C., Snook, E., Lundrigan, E., Armstrong, C., Perlman, K., Fratila, R., Mehltretter, J., Israel, S., Champagne, M., Williams, J., Simard, J., Parikh, S. V., Karp, J. F., Heller, K., Linnaranta, O., Cardona, L. G., … Margolese, H. C. (2022). Evaluating the perceived utility of an artificial intelligence-powered clinical decision support system for depression treatment using a simulation center. Psychiatry research, 308, 114336. https://doi.org/10.1016/j.psychres.2021.114336
-
Toro, C., Ohnuma, T., Komisarow, J., Vavilala, M. S., Laskowitz, D. T., James, M. L., Mathew, J. P., Hernandez, A. F., Goldstein, B. A., Sampson, J. H., & Krishnamoorthy, V. (2022). Early Vasopressor Utilization Strategies and Outcomes in Critically Ill Patients With Severe Traumatic Brain Injury. Anesthesia and analgesia, 10.1213/ANE.0000000000005949. Advance online publication. https://doi.org/10.1213/ANE.0000000000005949
-
Toro, C., Temkin, N., Barber, J., Manley, G., Jain, S., Ohnuma, T., Komisarow, J., Foreman, B., Korley, F. K., Vavilala, M. S., Laskowitz, D. T., Mathew, J. P., Hernandez, A., Sampson, J., James, M. L., Goldstein, B. A., Markowitz, A. J., Krishnamoorthy, V., & TRACK-TBI Investigators (2022). Association of Vasopressor Choice with Clinical and Functional Outcomes Following Moderate to Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurocritical care, 36(1), 180–191. https://doi.org/10.1007/s12028-021-01280-7
-
Toro, C., Hatfield, J., Temkin, N., Barber, J., Manley, G., Ohnuma, T., Komisarow, J., Foreman, B., Korley, F. K., Vavilala, M. S., Laskowitz, D. T., Mathew, J. P., Hernandez, A., Sampson, J., James, M. L., Raghunathan, K., Goldstein, B. A., Markowitz, A. J., Krishnamoorthy, V., & TRACK-TBI Investigators (2022). Risk Factors and Neurological Outcomes Associated With Circulatory Shock After Moderate-Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurosurgery, 10.1227/neu.0000000000002042. Advance online publication. https://doi.org/10.1227/neu.0000000000002042
-
Ulmer, C. S., Bosworth, H. B., Zervakis, J., Goodwin, K., Gentry, P., Rose, C., Jeffreys, A. S., Olsen, M., Weidenbacher, H. J., Beckham, J. C., & Voils, C. (2022). Provider-supported self-management cognitive behavioral therapy for insomnia (Tele-Self CBTi): Protocol for a randomized controlled trial. Contemporary clinical trials, 107060. Advance online publication. https://doi.org/10.1016/j.cct.2022.107060
-
Vaidya, G., Cellinese, N., & Lapp, H. (2022). A new phylogenetic data standard for computable clade definitions: the Phyloreference Exchange Format (Phyx). PeerJ, 10, e12618. https://doi.org/10.7717/peerj.12618
-
Van Wyck, D., Kolls, B. J., Wang, H., Cantillana, V., Maughan, M., & Laskowitz, D. T. (2022). Prophylactic treatment with CN-105 improves functional outcomes in a murine model of closed head injury. Experimental brain research, 10.1007/s00221-022-06417-4. Advance online publication. https://doi.org/10.1007/s00221-022-06417-4
-
Vilme, H., Paul, C. J., Duke, N. N., Campbell, S. D., Sauls, D., Muiruri, C., Skinner, A. C., Bosworth, H., Dokurugu, Y. M., & Fay, J. P. (2022). Using geographic information systems to characterize food environments around historically black colleges and universities: Implications for nutrition interventions. Journal of American college health : J of ACH, 70(3), 818–823. https://doi.org/10.1080/07448481.2020.1767113
-
Wang, M., Earley, M., Chen, L., Hanson, B. M., Yu, Y., Liu, Z., Salcedo, S., Cober, E., Li, L., Kanj, S. S., Gao, H., Munita, J. M., Ordoñez, K., Weston, G., Satlin, M. J., Valderrama-Beltrán, S. L., Marimuthu, K., Stryjewski, M. E., Komarow, L., Luterbach, Hill, C., … Multi-Drug Resistant Organism Network Investigators (2022). Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. The Lancet. Infectious diseases, 22(3), 401–412. https://doi.org/10.1016/S1473-3099(21)00399-6
-
Warman, P. I., Seas, A., Satyadev, N., Adil, S. M., Kolls, B. J., Haglund, M. M., Dunn, T. W., & Fuller, A. T. (2022). Machine Learning for Predicting In-Hospital Mortality After Traumatic Brain Injury in Both High-Income and Low- and Middle-Income Countries. Neurosurgery, 10.1227/NEU.0000000000001898. Advance online publication. https://doi.org/10.1227/NEU.0000000000001898
-
Wildman-Tobriner, B., Taghi-Zadeh, E., & Mazurowski, M. A. (2022). Artificial Intelligence (AI) Tools for Thyroid Nodules on Ultrasound, From the AJR Special Series on AI Applications. AJR. American journal of roentgenology, 10.2214/AJR.22.27430. Advance online publication. https://doi.org/10.2214/AJR.22.27430
-
Wiley, K., Findley, L., Goldrich, M., Rakhra-Burris, T. K., Stevens, A., Williams, P., Bult, C. J., Chisholm, R., Deverka, P., Ginsburg, G. S., Green, E. D., Jarvik, G., Mensah, G. A., Ramos, E., Relling, M. V., Roden, D. M., Rowley, R., Alterovitz, G., Aronson, S., Bastarache, L., … Williams, M. S. (2022). A research agenda to support the development and implementation of genomics-based clinical informatics tools and resources. Journal of the American Medical Informatics Association : JAMIA, 29(8), 1342–1349. https://doi.org/10.1093/jamia/ocac057
-
Wilson, N. A., Tcheng, J. E., Graham, J., & Drozda, J. P., Jr (2022). Advancing Patient Safety Surrounding Medical Devices: Barriers, Strategies, and Next Steps in Health System Implementation of Unique Device Identifiers. Medical devices (Auckland, N.Z.), 15, 177–186. https://doi.org/10.2147/MDER.S364539
-
Wisely CE, Wang D, Henao R, Grewal DS, Thompson AC, Robbins CB, Yoon SP, Soundararajan S, Polascik BW, Burke JR, Liu A, Carin L, Fekrat S. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol. 2022 Mar;106(3):388-395. doi: 10.1136/bjophthalmol-2020-317659. Epub 2020 Nov 26. PMID: 33243829.
-
Xia, M., Kheterpal, M. K., Wong, S. C., Park, C., Ratliff, W., Carin, L., & Henao, R. (2022). Lesion identification and malignancy prediction from clinical dermatological images. Scientific reports, 12(1), 15836. https://doi.org/10.1038/s41598-022-20168-w
-
Xiao, R., Ding, C., & Hu, X. (2022). Time Synchronization of Multimodal Physiological Signals through Alignment of Common Signal Types and Its Technical Considerations in Digital Health. Journal of imaging, 8(5), 120. https://doi.org/10.3390/jimaging8050120
-
Xie, F., Ning, Y., Yuan, H., Goldstein, B. A., Ong, M., Liu, N., & Chakraborty, B. (2022). AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. Journal of biomedical informatics, 125, 103959. https://doi.org/10.1016/j.jbi.2021.103959
-
Xu, H., Granger, B. B., Drake, C. D., Peterson, E. D., & Dupre, M. E. (2022). Effectiveness of Telemedicine Visits in Reducing 30-Day Readmissions Among Patients With Heart Failure During the COVID-19 Pandemic. Journal of the American Heart Association, e023935. Advance online publication. https://doi.org/10.1161/JAHA.121.023935
-
Xu, Z., Zhao, C., Scales, C.D. Predicting in-hospital length of stay: a two-stage modeling approach to account for highly skewed data. BMC Med Inform Decis Mak 22, 110 (2022). https://doi.org/10.1186/s12911-022-01855-0
-
Yan, M., Pencina, M. J., Boulware, L. E., & Goldstein, B. A. (2022). Observability and its impact on differential bias for clinical prediction models. Journal of the American Medical Informatics Association : JAMIA, ocac019. Advance online publication. https://doi.org/10.1093/jamia/ocac019
-
Yang, Z., Silcox, C., Sendak, M., Rose, S., Rehkopf, D., Phillips, R., Peterson, L., Marino, M., Maier, J., Lin, S., Liaw, W., Kakadiaris, I. A., Heintzman, J., Chu, I., & Bazemore, A. (2022). Advancing primary care with Artificial Intelligence and Machine Learning. Healthcare (Amsterdam, Netherlands), 10(1), 100594. https://doi.org/10.1016/j.hjdsi.2021.100594
-
Yuan, H., Xie, F., Ong, M., Ning, Y., Chee, M. L., Saffari, S. E., Abdullah, H. R., Goldstein, B. A., Chakraborty, B., & Liu, N. (2022). AutoScore-Imbalance: An interpretable machine learning tool for development of clinical scores with rare events data. Journal of biomedical informatics, 129, 104072. https://doi.org/10.1016/j.jbi.2022.104072
-
Zhang, H. G., Dagliati, A., Shakeri Hossein Abad, Z., Xiong, X., Bonzel, C. L., Xia, Z., Tan, B., Avillach, P., Brat, G. A., Hong, C., Morris, M., Visweswaran, S., Patel, L. P., Gutiérrez-Sacristán, A., Hanauer, D. A., Holmes, J. H., Samayamuthu, M. J., Bourgeois, F. T., L'Yi, S., Maidlow, S. E., … Weber, G. M. (2022). International electronic health record-derived post-acute sequelae profiles of COVID-19 patients. NPJ digital medicine, 5(1), 81. https://doi.org/10.1038/s41746-022-00623-8
-
Zhang, D., Neely, B., Lo, J. Y., Patel, B. N., Hyslop, T., & Gupta, R. T. (2022). Utility of a Rule-Based Algorithm in the Assessment of Standardized Reporting in PI-RADS. Academic radiology, S1076-6332(22)00370-1. Advance online publication. https://doi.org/10.1016/j.acra.2022.06.024
-
Zhou, D., Gan, Z., Shi, X., Patwari, A., Rush, E., Bonzel, C. L., Panickan, V. A., Hong, C., Ho, Y. L., Cai, T., Costa, L., Li, X., Castro, V. M., Murphy, S. N., Brat, G., Weber, G., Avillach, P., Gaziano, J. M., Cho, K., Liao, K. P., … Cai, T. (2022). Multiview Incomplete Knowledge Graph Integration with application to cross-institutional EHR data harmonization. Journal of biomedical informatics, 104147. Advance online publication. https://doi.org/10.1016/j.jbi.2022.104147
- Badawy, S. M., Abebe, K. Z., Reichman, C. A., Checo, G., Hamm, M. E., Stinson, J., Lalloo, C., Carroll, P., Saraf, S. L., Gordeuk, V. R., Desai, P., Shah, N., Liles, D., Trimnell, C., & Jonassaint, C. R. (2021). Comparing the Effectiveness of Education Versus Digital Cognitive Behavioral Therapy for Adults With Sickle Cell Disease: Protocol for the Cognitive Behavioral Therapy and Real-time Pain Management Intervention for Sickle Cell via Mobile Applications (CaRISMA) Study. JMIR research protocols, 10(5), e29014. https://doi.org/10.2196/29014
- Bastian LA, Cohen SP, Katsovich L, Becker WC, Brummett BR, Burgess DJ, Crunkhorn AE, Denneson LM, Frank JW, Goertz C, Ilfeld B, Kanzler KE, Krishnaswamy A, LaChappelle K, Martino S, Mattocks K, McGeary CA, Reznik TE, Rhon DI, Salsbury SA, Seal KH, Semiatin AM, Shin MH, Simon CB, Teyhen DS, Zamora K, Kerns RD; NIH-DOD-VA Pain Management Collaboratory. Stakeholder Engagement in Pragmatic Clinical Trials: Emphasizing Relationships to Improve Pain Management Delivery and Outcomes. Pain Med. 2020 Dec 12;21(Suppl 2):S13-S20. doi: 10.1093/pm/pnaa333. PMID: 33313726; PMCID: PMC7824996
- Batch BC, Spratt SE, Blalock DV, Benditz C, Weiss A, Dolor RJ, Cho AH. General Behavioral Engagement and Changes in Clinical and Cognitive Outcomes of Patients with Type 2 Diabetes Using the Time2Focus Mobile App for Diabetes Education: Pilot Evaluation. J Med Internet Res. 2021 Jan 20;23(1):e17537. doi: 10.2196/17537. PMID: 33470947.
- Batlle JC, Dreyer K, Allen B, Cook T, Roth CJ, Kitts AB, Geis R, Wu CC, Lungren MP, Patti J, Prater A, Rubin D, Halabi S, Tilkin M, Hoffman T, Coombs L, Wald C. Data Sharing of Imaging in an Evolving Health Care World: Report of the ACR Data Sharing Workgroup, Part 2: Annotation, Curation, and Contracting. J Am Coll Radiol. 2021 Dec;18(12):1655-1665. doi: 10.1016/j.jacr.2021.07.015. Epub 2021 Oct 2. PMID: 34607753.
- Bent B, Cho PJ, Henriquez M, Wittmann A, Thacker C, Feinglos M, Crowley MJ, Dunn JP. Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches. NPJ Digit Med. 2021 Jun 2;4(1):89. doi: 10.1038/s41746-021-00465-w. PMID: 34079049; PMCID: PMC8172541.
- Bent B, Cho PJ, Wittmann A, et al. Non-invasive wearables for remote monitoring of HbA1c and glucose variability: proof of concept. BMJ Open Diabetes Research and Care 2021;9:e002027. doi: 10.1136/bmjdrc-2020-002027
- Bent B, Enache OM, Goldstein B, Kibbe W, Dunn JP. Reply: Matters Arising ‘Investigating sources of inaccuracy in wearable optical heart rate sensors’. NPJ Digit Med. 2021 Feb 26;4(1):39. doi: 10.1038/s41746-021-00409-4. PMID: 33637842; PMCID: PMC7910441.
- Bent B, Sim I, Dunn JP. Digital Medicine Community Perspectives and Challenges: Survey Study. JMIR Mhealth Uhealth. 2021 Feb 3;9(2):e24570. doi: 10.2196/24570. PMID: 33533721; PMCID: PMC7889423.
- Bent, B., Henriquez, M., & Dunn, J. (2021). Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data. IEEE open journal of engineering in medicine and biology, 2, 263–266. https://doi.org/10.1109/OJEMB.2021.3105816
- Berke K, Sun P, Ong E, Sanati N, Huffman A, Brunson T, Loney F, Ostrow J, Racz R, Zhao B, Xiang Z, Masci AM, Zheng J, Wu G, He Y. VaximmutorDB: A Web-Based Vaccine Immune Factor Database and Its Application for Understanding Vaccine-Induced Immune Mechanisms. Front Immunol. 2021 Mar 12;12:639491. doi: 10.3389/fimmu.2021.639491. PMID: 33777032; PMCID: PMC7994782.
- Bernardo J, Rent S, Arias-Shah A, Hoge MK, Shaw RJ. Parental Stress and Mental Health Symptoms in the NICU: Recognition and Interventions. Neoreviews. 2021 Aug;22(8):e496-e505. doi: 10.1542/neo.22-8-e496.PMID: 34341157
- Buda, M., Saha, A., Walsh, R., Ghate, S., Li, N., Swiecicki, A., Lo, J. Y., & Mazurowski, M. A. (2021). A Data Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images. JAMA network open, 4(8), e2119100. https://doi.org/10.1001/jamanetworkopen.2021.19100
- Bylstra Y, Lim WK, Kam S, Tham KW, Wu RR, Teo JX, et al. Family history assessment significantly enhances delivery of precision medicine in the genomics era. Genome Med. 2021;13(1). doi: 10.1186/s13073-020-00819-1. PMID: 33413596; PMCID: PMC7791763.
- Califf RM, Curtis LH, Harrington RA, Hernandez AF, Peterson ED. Generating evidence for therapeutic effects: the need for well-conducted randomized trials. J Clin Invest. 2021 Jan 19;131(2):e146391. doi: 10.1172/JCI146391. PMID: 33270604; PMCID: PMC7810467.
- Cary, M. P., Jr, Zhuang, F., Draelos, R. L., Pan, W., Amarasekara, S., Douthit, B. J., Kang, Y., & Colón-Emeric, C. S. (2021). Machine Learning Algorithms to Predict Mortality and Allocate Palliative Care for Older Patients With Hip Fracture. Journal of the American Medical Directors Association, 22(2), 291–296. https://doi.org/10.1016/j.jamda.2020.09.025
- Chen K, Xu H, Lei Y, Lio P, Li Y, Guo H, Ali Moni M. Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance. Brief Bioinform. 2021 May 10:bbab100. doi: 10.1093/bib/bbab100. Epub ahead of print. PMID: 33971668.
- Chuang KC, Giles W, Adamson J. A tool for patient-specific prediction of delivery discrepancies in machine parameters using trajectory log files. Med Phys. 2021 Mar;48(3):978-990. doi: 10.1002/mp.14670. Epub 2021 Jan 21. PMID: 33332618.
- Clark-Randall, A., Halpern, D. J., Taylor, J., Roth, C. J., Gupta, R. T., Woodall, J., & Shah, K. P. (2021). Implementation of a Radiology Utilization Dashboard Yields Significant Cost Savings in a Large Primary Care Network. Journal of the American College of Radiology : JACR, 18(7), 947–950. https://doi.org/10.1016/j.jacr.2021.02.015
- Cox ED, Dobrozsi SK, Forrest CB, Gerhardt WE, Kliems H, Reeve BB, Rothrock NE, Lai JS, Svenson JM, Thompson LA, Tran TDN, Tucker CA. Considerations to Support Use of Patient-Reported Outcomes Measurement Information System Pediatric Measures in Ambulatory Clinics. J Pediatr. 2021 Mar;230:198-206.e2. doi: 10.1016/j.jpeds.2020.11.053. Epub 2020 Nov 30. PMID: 33271193; PMCID: PMC7914197.
- De La Vega, F. M., Chowdhury, S., Moore, B., Frise, E., McCarthy, J., Hernandez, E. J., Wong, T., James, K., Guidugli, L., Agrawal, P. B., Genetti, C. A., Brownstein, C. A., Beggs, A. H., Löscher, B. S., Franke, A., Boone, B., Levy, S. E., Õunap, K., Pajusalu, S., Huentelman, M., … Kingsmore, S. F. (2021). Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome medicine, 13(1), 153. https://doi.org/10.1186/s13073-021-00965-0
- Deak KL, Jackson JB, Valkenburg KC, Keefer LA, Robinson Gerding KM, Angiuoli SV, Datto MB, McCall SJ. Next-Generation Sequencing Concordance Analysis of Comprehensive Solid Tumor Profiling between a Centralized Specialty Laboratory and the Decentralized Personal Genome Diagnostics elio Tissue Complete Kitted Solution. J Mol Diagn. 2021 Oct;23(10):1324-1333. doi: 10.1016/j.jmoldx.2021.07.004. Epub 2021 Jul 24. PMID: 34314880.
- Desai M, Boulos M, Pomann GM, Steinberg GK, Longo FM, Leonard M, Montine T, Blomkalns AL, Harrington RA. Establishing a Data Science Unit in an Academic Medical Center: An Illustrative Model. Acad Med. 2021 Mar 23. doi: 10.1097/ACM.0000000000004079. Epub ahead of print. PMID: 33769342.
- Desai RJ, Matheny ME, Johnson K, Marsolo K, Curtis LH, Nelson JC, Heagerty PJ, Maro J, Brown J, Toh S, Nguyen M, Ball R, Pan GD, Wang SV, Gagne JJ, Schneeweiss S. Broadening the reach of the FDA Sentinel system: A roadmap for integrating electronic health record data in a causal analysis framework. NPJ Digit Med. 2021 Dec 20;4(1):170. doi: 10.1038/s41746-021-00542-0. PMID: 34931012; PMCID: PMC8688411.
- Douthit BJ, Cary MP, Lytle KS, Richesson, RL, Shaw RJ Artificial Intelligence in Nursing. American Nurse Journal. 2021 Dec.
- Douthit BJ. The influence of the learning health system to address the COVID-19 pandemic: An examination of early literature. Int J Health Plann Manage. 2021 Mar;36(2):244-251. doi: 10.1002/hpm.3088. Epub 2020 Oct 26. PMID: 33103264.
- Douthit BJ, Del Fiol G, Staes CJ, Docherty SL, Richesson RL. A Conceptual Framework of Data Readiness: The Contextual Intersection of Quality, Availability, Interoperability, and Provenance. Appl Clin Inform. 2021 May;12(3):675-685. doi: 10.1055/s-0041-1732423. Epub 2021 Jul 21. PMID: 34289504; PMCID: PMC8294946.
- Dov D, Assaad S, Syedibrahim A, Bell J, Huang J, Madden J, Bentley R, McCall S, Henao R, Carin L, Foo WC. A Hybrid Human-Machine Learning Approach for Screening Prostate Biopsies Can Improve Clinical Efficiency Without Compromising Diagnostic Accuracy. Arch Pathol Lab Med. 2021 Sep 30. doi: 10.5858/arpa.2020-0850-OA. Epub ahead of print. PMID: 34591085.
- Dov D, Kovalsky SZ, Assaad S, Cohen J, Range DE, Pendse AA, Henao R, Carin L. Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images. Med Image Anal. 2021 Jan;67:101814. doi: 10.1016/j.media.2020.101814. Epub 2020 Sep 25. PMID: 33049578; PMCID: PMC7726041.
- Dov, D., Kovalsky, S. Z., Feng, Q., Assaad, S., Cohen, J., Bell, J., Henao, R., Carin, L., & Range, D. E. (2021). Use of Machine Learning-Based Software for the Screening of Thyroid Cytopathology Whole Slide Images. Archives of pathology & laboratory medicine, 10.5858/arpa.2020-0712-OA. Advance online publication. https://doi.org/10.5858/arpa.2020-0712-OA
- Draelos RL, Dov D, Mazurowski MA, Lo JY, Henao R, Rubin GD, et al. Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes. Med Image Anal. 2021;67. PMID: 33129142 PMCID: PMC7726032
- Dunn J, Kidzinski L, Runge R, Witt D, Hicks JL, Schüssler-Fiorenza Rose SM, Li X, Bahmani A, Delp SL, Hastie T, Snyder MP. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat Med. 2021 Jun;27(6):1105-1112. doi: 10.1038/s41591-021-01339-0. Epub 2021 May 24. PMID: 34031607; PMCID: PMC8293303.
- Dunn, T. W., Marshall, J. D., Severson, K. S., Aldarondo, D. E., Hildebrand, D., Chettih, S. N., Wang, W. L., Gellis, A. J., Carlson, D. E., Aronov, D., Freiwald, W. A., Wang, F., & Ölveczky, B. P. (2021). Geometric deep learning enables 3D kinematic profiling across species and environments. Nature methods, 18(5), 564–573. https://doi.org/10.1038/s41592-021-01106-6
- Engelhard, M. M., Navar, A. M., & Pencina, M. J. (2021). Incremental Benefits of Machine Learning-When Do We Need a Better Mousetrap?. JAMA cardiology, 6(6), 621–623. https://doi.org/10.1001/jamacardio.2021.0139
- Eskander A, Sahovaler A, Shin J, Deutsch K, Crowson M, Goyal N, Witsell DL, Schulz K, Gross ND, Weber R, Khariwala SS, Cohen S, CyrLee DW, Mehta V. A preliminary assessment of guideline adherence and clinical variation in oral cancer treatment: a MarketScan database study. BMC Oral Health. 2021 May 17;21(1):270. doi: 10.1186/s12903-021-01616-x. PMID: 34001080; PMCID: PMC8130137.
- Evans SR, Paraoan D, Perlmutter J, Raman SR, Sheehan JJ, Hallinan ZP. Real-World Data for Planning Eligibility Criteria and Enhancing Recruitment: Recommendations from the Clinical Trials Transformation Initiative. Ther Innov Regul Sci. 2021 Jan 3. doi: 10.1007/s43441-020-00248-7. Epub ahead of print. PMID: 33393014.
- Fayanju, O. M., Ren, Y., Stashko, I., Power, S., Thornton, M. J., Marcom, P. K., Hyslop, T., & Hwang, E. S. (2021). Patient-reported causes of distress predict disparities in time to evaluation and time to treatment after breast cancer diagnosis. Cancer, 127(5), 757–768. https://doi.org/10.1002/cncr.33310
- Fenn A, Davis C, Buckland DM, Kapadia N, Nichols M, Gao M, Knechtle W, Balu S, Sendak M, Theiling BJ. Development and Validation of Machine Learning Models to Predict Admission From Emergency Department to Inpatient and Intensive Care Units. Ann Emerg Med. 2021 Aug;78(2):290-302. doi: 10.1016/j.annemergmed.2021.02.029. Epub 2021 May 8. PMID: 33972128.
- Forrest CB, McTigue KM, Hernandez AF, Cohen LW, Cruz H, Haynes K, et al. PCORnet (R) 2020: current state, accomplishments, and future directions. J Clin Epidemiol. 2021;129:60-7. Epub 2020 Sep 28. PMID: 33002635; PMCID: PMC7521354.
- Forrest CB, Xu H, Thomas LE, Webb LE, Cohen LW, Carey TS, Chuang CH, Daraiseh NM, Kaushal R, McClay JC, Modave F, Nauman E, Todd JV, Wallia A, Bruno C, Hernandez AF, O’Brien EC; HERO Registry Research Group. Impact of the Early Phase of the COVID-19 Pandemic on US Healthcare Workers: Results from the HERO Registry. J Gen Intern Med. 2021 Mar 10:1–8. doi: 10.1007/s11606-020-06529-z. Epub ahead of print. PMID: 33694071; PMCID: PMC7946335.
- Fournier L, Costaridou L, Bidaut L, Michoux N, Lecouvet FE, de Geus-Oei LF, Boellaard R, Oprea-Lager DE, Obuchowski NA, Caroli A, Kunz WG, Oei EH, O’Connor JPB, Mayerhoefer ME, Franca M, Alberich-Bayarri A, Deroose CM, Loewe C, Manniesing R, Caramella C, Lopci E, Lassau N, Persson A, Achten R, Rosendahl K, Clement O, Kotter E, Golay X, Smits M, Dewey M, Sullivan DC, van der Lugt A, deSouza NM. Incorporating radiomics into clinical trials: expert consensus on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol. 2021 Jan 25. doi: 10.1007/s00330-020-07598-8. Epub ahead of print. PMID: 33492473.
- Freedman JA, Al Abo M, Allen TA, Piwarski SA, Wegermann K, Patierno SR. Biological Aspects of Cancer Health Disparities. Annu Rev Med. 2021 Jan 27;72:229-241. doi: 10.1146/annurev-med-070119-120305. PMID: 33502900.
- Friis-Healy EA, Nagy GA, Kollins SH. It Is Time to REACT: Opportunities for Digital Mental Health Apps to Reduce Mental Health Disparities in Racially and Ethnically Minoritized Groups. JMIR Ment Health. 2021 Jan 26;8(1):e25456. doi: 10.2196/25456. PMID: 33406050; PMCID: PMC7842858.
- Fuller CC, Nambudiri VE, Spencer-Smith C, Curtis LH, Shinde M, Cosgrove A, Johnson M, Hickok J, Honda S, Ismail H, Kaufman RM, Kennedy A, Miller KM, Mohlman DJ, Poland RE, Rosofsky R, Smith K, Surani SR, Baker MA. Medical chart validation of inpatient diagnosis codes for transfusion-related acute lung injury 2013-2015. Transfusion. 2021 Mar;61(3):754-766. doi: 10.1111/trf.16251. Epub 2021 Jan 27. PMID: 33506519.
- Gadhoumi, K., Beltran, A., Scully, C. G., Xiao, R., Nahmias, D. O., & Hu, X. (2021). Technical considerations for evaluating clinical prediction indices: a case study for predicting code blue events with MEWS. Physiological measurement, 42(5), 10.1088/1361-6579/abfbb9. https://doi.org/10.1088/1361-6579/abfbb9
- Gagliardi, J. P., Bonanno, B., McPeek Hinz, E. R., Musser, R. C., Knudsen, N. W., Palko, M., McNair, F., Lee, H. J., & Clay, A. S. (2021). Implementation of Changes to Medical Student Documentation at Duke University Health System: Balancing Education With Service. Acad Med. 2021 Jun 1;96(6):900-905. doi: 10.1097/ACM.0000000000003729. PMID: 32909999.
- Garland A, Weinfurt K, Sugarman J. Incentives and payments in pragmatic clinical trials: Scientific, ethical, and policy considerations. Clin Trials. 2021 Dec;18(6):699-705. doi: 10.1177/17407745211048178. PMID: 34766524; PMCID: PMC8597901.
- Ginsburg GS, Cavallari LH, Chakraborty H, Cooper-DeHoff RM, Dexter PR, Eadon MT, Ferket BS, Horowitz CR, Johnson JA, Kannry J, Kucher N, Madden EB, Orlando LA, Parker W, Peterson J, Pratt VM, Rakhra-Burris TK, Ramos MA, Skaar TC, Sperber N, Steen-Burrell KA, Van Driest SL, Voora D, Wiisanen K, Winterstein AG, Volpi S; IGNITE PTN. Establishing the value of genomics in medicine: the IGNITE Pragmatic Trials Network. Genet Med. 2021 Jul;23(7):1185-1191. doi: 10.1038/s41436-021-01118-9. Epub 2021 Mar 29. PMID: 33782552; PMCID: PMC8263480.
- Garside N, Zaribafzadeh H, Henao R, Chung R, Buckland D. CPT to RVU conversion improves model performance in the prediction of surgical case length. Sci Rep. 2021 Jul 8;11(1):14169. doi: 10.1038/s41598-021-93573-2. PMID: 34239005; PMCID: PMC8266858.
- Główczyńska, R., Piotrowicz, E., Szalewska, D., Piotrowicz, R., Kowalik, I., Pencina, M. J., Zaręba, W., Banach, M., Orzechowski, P., Pluta, S., Irzmański, R., Kalarus, Z., & Opolski, G. (2021). Effects of hybrid comprehensive telerehabilitation on cardiopulmonary capacity in heart failure patients depending on diabetes mellitus: subanalysis of the TELEREH-HF randomized clinical trial. Cardiovascular diabetology, 20(1), 106. https://doi.org/10.1186/s12933-021-01292-9
- Goergen, C. J., Tweardy, M. J., Steinhubl, S. R., Wegerich, S. W., Singh, K., Mieloszyk, R. J., & Dunn, J. (2021). Detection and Monitoring of Viral Infections via Wearable Devices and Biometric Data. Annual review of biomedical engineering, 10.1146/annurev-bioeng-103020-040136. Advance online publication. https://doi.org/10.1146/annurev-bioeng-103020-040136
- Goode V, Cary M, Crego N, Thornlow D. Using Clinical Data to Improve the Quality of Health Care. J Perianesth Nurs. 2021 Apr;36(2):207-208. doi: 10.1016/j.jopan.2021.01.001. PMID: 33812506.
- Green, J. A., Ephraim, P. L., Hill-Briggs, F., Browne, T., Strigo, T. S., Hauer, C. L., Yule, C., Stametz, R. A., Littlewood, D., Pendergast, J. F., Peskoe, S., Clair Russell, J. S., Norfolk, E., Bucaloiu, I. D., Kethireddy, S., Davis, D., dePrisco, J., Malloy, D., Fulmer, S., Martin, J., … Boulware, L. E. (2021). Integrated Digital Health System Tools to Support Decision Making and Treatment Preparation in CKD: The PREPARE NOW Study. Kidney medicine, 3(4), 565–575.e1. https://doi.org/10.1016/j.xkme.2021.03.009
- Green MF, Bell JL, Hubbard CB, McCall SJ, McKinney MS, Riedel JE, Menendez CS, Abbruzzese JL, Strickler JH, Datto MB. Implementation of a Molecular Tumor Registry to Support the Adoption of Precision Oncology Within an Academic Medical Center: The Duke University Experience. JCO Precis Oncol. 2021 Sep 16;5:PO.21.00030. doi: 10.1200/PO.21.00030. PMID: 34568718; PMCID: PMC8457820.
- Griffin AC, Leung TI, Tenenbaum JD, Chung AE. Gender representation in U.S. biomedical informatics leadership and recognition. J Am Med Inform Assoc. 2021 Feb 8:ocaa344. doi: 10.1093/jamia/ocaa344. Epub ahead of print. PMID: 33555005.
- Grzesiak, E., Bent, B., McClain, M. T., Woods, C. W., Tsalik, E. L., Nicholson, B. P., Veldman, T., Burke, T. W., Gardener, Z., Bergstrom, E., Turner, R. B., Chiu, C., Doraiswamy, P. M., Hero, A., Henao, R., Ginsburg, G. S., & Dunn, J. (2021). Assessment of the Feasibility of Using Noninvasive Wearable Biometric Monitoring Sensors to Detect Influenza and the Common Cold Before Symptom Onset. JAMA network open, 4(9), e2128534. https://doi.org/10.1001/jamanetworkopen.2021.28534
- Guo, Z., Ding, C., Hu, X., & Rudin, C. (2021). A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Physiological measurement, 42(12), 10.1088/1361-6579/ac3b3d. https://doi.org/10.1088/1361-6579/ac3b3d
- Haendel MA, Chute CG, Bennett TD, Eichmann DA, Guinney J, Kibbe WA, Payne PRO, Pfaff ER, Robinson PN, Saltz JH, Spratt H, Suver C, Wilbanks J, Wilcox AB, Williams AE, Wu C, et al.; N3C Consortium. The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment. J Am Med Inform Assoc. 2021 Mar 1;28(3):427-443. doi: 10.1093/jamia/ocaa196. PMID: 32805036; PMCID: PMC7454687.
- Heggestad JT, Kinnamon DS, Liu J, Joh DY, Fontes CM, Wei Q, Ozcan A, Hucknall AM, Chilkoti A. Smartphone Enabled Point-of-Care Detection of Serum Biomarkers. Methods Mol Biol. 2022;2393:343-365. doi: 10.1007/978-1-0716-1803-5_19. PMID: 34837189.
- Hernanz-Schulman M, Frush DP, Bettmann MA. Appropriate use criteria and computerized decision support for the pediatric population: background, Pediatric Rapid Response Committee and future direction. Pediatr Radiol. 2021 Mar;51(3):371-377. doi: 10.1007/s00247-020-04898-5. Epub 2021 Jan 30. PMID: 33515052.
- Hollister-Meadows L, Richesson RL, De Gagne J, Rawlins N. Association between evidence-based training and clinician proficiency in electronic health record use. J Am Med Inform Assoc. 2021 Mar 18;28(4):824-831. doi: 10.1093/jamia/ocaa333. PMID: 33575787; PMCID: PMC7973447.
- Hong JC, Hauser ER, Redding TS 4th, Sims KJ, Gellad ZF, O’Leary MC, Hyslop T, Madison AN, Qin X, Weiss D, Bullard AJ, Williams CD, Sullivan BA, Lieberman D, Provenzale D. Characterizing chronological accumulation of comorbidities in healthy veterans: a computational approach. Sci Rep. 2021 Apr 14;11(1):8104. doi: 10.1038/s41598-021-85546-2. PMID: 33854078; PMCID: PMC8046765.
- Huffman, A., Masci, A. M., Zheng, J., Sanati, N., Brunson, T., Wu, G., & He, Y. (2021). CIDO ontology updates and secondary analysis of host responses to COVID-19 infection based on ImmPort reports and literature. Journal of biomedical semantics, 12(1), 18. https://doi.org/10.1186/s13326-021-00250-4
- Hurst J, Liu Y, Maxson P, Permar S, Boulware LE, & Goldstein B (2021). Development of an electronic health records datamart to support clinical and population health research.Journal of Clinical and Translational Science, 5(1), E13. doi:10.1017/cts.2020.499
- Hurst JH, Zhao C, Fitzpatrick NS, Goldstein BA, Lang JE. Reduced pediatric urgent asthma utilization and exacerbations during the COVID-19 pandemic. Pediatr Pulmonol. 2021 Oct;56(10):3166-3173. doi: 10.1002/ppul.25578. Epub 2021 Jul 21. PMID: 34289526; PMCID: PMC8441648.
- Huang X, Tatonetti N, LaRow K, Delgoffee B, Mayer J, Page D, Hebbring SJ. E-Pedigrees: a large-scale automatic family pedigree prediction application. Bioinformatics. 2021 Jun 4:btab419. doi: 10.1093/bioinformatics/btab419. Epub ahead of print. PMID: 34086863.
- Innocenti F, Sibley AB, Patil SA, Etheridge AS, Jiang C, Ou FS, Owzar K, et al. Genomic Analysis of Germline Variation Associated with Survival of Patients with Colorectal Cancer Treated with Chemotherapy Plus Biologics in CALGB/SWOG 80405 (Alliance). Clin Cancer Res. 2021;27(1):267-75. doi: 10.1158/1078-0432.CCR-20-2021. Epub 2020 Sep 21. PMID: 32958699; PMCID: PMC7785628.
- Kansal A, Gao M, Balu S, Nichols M, Corey K, Kashyap S, Sendak M. Impact of diagnosis code grouping method on clinical prediction model performance: A multi-site retrospective observational study. Int J Med Inform. 2021 Apr 16;151:104466. doi: 10.1016/j.ijmedinf.2021.104466. Epub ahead of print. PMID: 33933904.
- Katsanis, S. H., Claes, P., Doerr, M., Cook-Deegan, R., Tenenbaum, J. D., Evans, B. J., Lee, M. K., Anderton, J., Weinberg, S. M., & Wagner, J. K. (2021). A survey of U.S. public perspectives on facial recognition technology and facial imaging data practices in health and research contexts. PloS one, 16(10), e0257923. https://doi.org/10.1371/journal.pone.0257923
- Kerlavage AR, Kirchhoff AC, Guidry Auvil JM, Sharpless NE, Davis KL, Reilly K, et al., Kibbe WA. Cancer Informatics for Cancer Centers: Scientific Drivers for Informatics, Data Science, and Care in Pediatric, Adolescent, and Young Adult Cancer. JCO Clin Cancer Inform. 2021 Aug;5:881-896. doi: 10.1200/CCI.21.00040. PMID: 34428097.
- Kim HW, Jenista ER, Wendell DC, Azevedo CF, Campbell MJ, Darty SN, Parker MA, Kim RJ. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol. 2021 Jun 29:e212828. doi: 10.1001/jamacardio.2021.2828. Epub ahead of print. PMID: 34185046; PMCID: PMC8243258.
- Kantor A, Haga SB. The Potential Benefit of Expedited Development and Approval Programs in Precision Medicine. J Pers Med. 2021 Jan 14;11(1):45. doi: 10.3390/jpm11010045. PMID: 33466644; PMCID: PMC7828670.
- Leifer ES, Mentz RJ. Patient-Centered Measures of Treatment Benefit. JACC Heart Fail. 2020 Dec;8(12):996-998. doi: 10.1016/j.jchf.2020.09.003. Epub 2020 Oct 7. PMID: 33039449.
- Levenson M, He W, Chen J, Fang Y, Faries D, Goldstein BA, et al. Biostatistical considerations when using RWD and RWE in Clinical Studies for Regulatory Purposes: A Landscape Assessment. Stat Biopharm Res. 2021:1-11. https://doi.org/10.1080/19466315.2021.1883473.
- Lewinski AA, Sullivan C, Allen KD, Crowley MJ, Gierisch JM, Goldstein KM, Gray K, Hastings SN, Jackson GL, McCant F, Shapiro A, Tucker M, Turvey C, Zullig LL, Bosworth HB. Accelerating Implementation of Virtual Care in an Integrated Health Care System: Future Research and Operations Priorities. J Gen Intern Med. 2021 Jan 26. doi: 10.1007/s11606-020-06517-3. Epub ahead of print. PMID: 33496928.
- Lewinski AA, Bosworth HB, Goldstein KM, Gierisch JM, Jazowski S, McCant F, White-Clark C, Smith VA, Zullig LL. Improving cardiovascular outcomes by using team-supported, EHR-leveraged, active management: Disseminating a successful quality improvement project. Contemp Clin Trials Commun. 2021 Feb 6;21:100705. doi: 10.1016/j.conctc.2021.100705. PMID: 33644491; PMCID: PMC7887650.
- Lewinski AA, Vaughn J, Diane A, Barnes A, Crowley MJ, Steinberg D, Stevenson J, Yang Q, Vorderstrasse AA, Hatch D, Jiang M, Shaw RJ. Perceptions of Using Multiple Mobile Health Devices to Support Self-Management Among Adults With Type 2 Diabetes: A Qualitative Descriptive Study. J Nurs Scholarsh. 2021 Apr 29. doi: 10.1111/jnu.12667. Epub ahead of print. PMID: 33928755.
- Li X, Wang C, Sheng Y, Zhang J, Wang W, Yin FF, Wu Q, Wu QJ, Ge Y. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Med Phys. 2021 Jun;48(6):2714-2723. doi: 10.1002/mp.14770. Epub 2021 Apr 25. PMID: 33577108.
- Lindsell CJ, Pomann GM, Oster RA, Mooney SD, Enders FT. Data science in clinical and translational research: Improving the health of the data to knowledge pipeline. J Clin Transl Sci. 2021 Mar 9;5(1):e77. doi: 10.1017/cts.2020.569. PMID: 33948295; PMCID: PMC8057462.
- Luo L, King AA, Carroll Y, Baumann AA, Brambilla D, Carpenter CR, Colla J, Gibson RW, Gollan S, Hall G, Klesges L, Kutlar A, Lyon M, Melvin CL, Norell S, Mueller M, Potter MB, Richesson R, Richardson LD, Ryan G, Siewny L, Treadwell M, Zun L, Armstrong-Brown J, Cox L, Tanabe P. Electronic Health Record-Embedded Individualized Pain Plans for Emergency Department Treatment of Vaso-occlusive Episodes in Adults With Sickle Cell Disease: Protocol for a Preimplementation and Postimplementation Study. JMIR Res Protoc. 2021 Apr 16;10(4):e24818. doi: 10.2196/24818. PMID: 33861209.
- Lytle KS, Westra BL, Whittenburg L, Adams M, Akre M, Ali S, Furukawa M, Hartleben S, Hook M, Johnson SG, Settergren TT, Thibodeaux M. Information Models Offer Value to Standardize Electronic Health Record Flowsheet Data: A Fall Prevention Exemplar. J Nurs Scholarsh. 2021 Mar 15. doi: 10.1111/jnu.12646. Epub ahead of print. PMID: 33720514.
- Lyu P, Neely B, Solomon J, Rigiroli F, Ding Y, Schwartz FR, Thomsen B, Lowry C, Samei E, Marin D. Effect of deep learning image reconstruction in the prediction of resectability of pancreatic cancer: Diagnostic performance and reader confidence. Eur J Radiol. 2021 Aug;141:109825. doi: 10.1016/j.ejrad.2021.109825. Epub 2021 Jun 11. PMID: 34144309.
- Ma J, Beliveau J, Snider W, Jordan W, Casarett D. Combining Multiple Decedent Data Sources for a Population-Based Picture of End-of-Life Healthcare Utilization. J Pain Symptom Manage. 2021 Sep;62(3):e200-e205. doi: 10.1016/j.jpainsymman.2021.03.005. Epub 2021 Mar 12. PMID: 33722688.
- Madhavan S, Bastarache L, Brown JS, Butte AJ, Dorr DA, Embi PJ, Friedman CP, Johnson KB, Moore JH, Kohane IS, Payne PRO, Tenenbaum JD, Weiner MG, Wilcox AB, Ohno-Machado L. Use of electronic health records to support a public health response to the COVID-19 pandemic in the United States: a perspective from 15 academic medical centers. J Am Med Inform Assoc. 2021 Feb 15;28(2):393-401. doi: 10.1093/jamia/ocaa287. PMID: 33260207; PMCID: PMC7665546.
- Mandl KD, Perakslis ED. HIPAA and the Leak of “Deidentified” EHR Data. N Engl J Med. 2021 Jun 10;384(23):2171-2173. doi: 10.1056/NEJMp2102616. Epub 2021 Jun 5. PMID: 34110112.
- Marquis-Gravel G, Robertson H, Jones WS, Riley D, Ford DE, Crenshaw D, et al. Streamlining the institutional review board process in pragmatic randomized clinical trials: challenges and lessons learned from the Aspirin Dosing: A Patient-centric Trial Assessing Benefits and Long-Term Effectiveness (ADAPTABLE) trial. 2021;22(1):no. 90. doi: 10.1186/s13063-021-05026-w. PMID: 33494785; PMCID: PMC7831187.
- Marquis-Gravel G, Hammill BG, Mulder H, Roe MT, Robertson HR, Wruck LM, Sharlow A, Harris DF, Pohlman FW, Hernandez AF, Jones WS. Validation of Cardiovascular End Points Ascertainment Leveraging Multisource Electronic Health Records Harmonized Into a Common Data Model in the ADAPTABLE Randomized Clinical Trial. Circ Cardiovasc Qual Outcomes. 2021 Dec;14(12):e008190. doi: 10.1161/CIRCOUTCOMES.121.008190. Epub 2021 Dec 10. PMID: 34886680.
- Masci, A. M., White, S., Neely, B., Ardini-Polaske, M., Hill, C. B., Misra, R. S., Aronow, B., Gaddis, N., Yang, L., Wert, S. E., Palmer, S. M., Chan, C., & LungMAP Consortium (2021). Ontology-guided segmentation and object identification for developmental mouse lung immunofluorescent images. BMC bioinformatics, 22(1), 82. https://doi.org/10.1186/s12859-021-04008-8
- Mazurowski M. A. (2021). Do We Expect More from Radiology AI than from Radiologists?. Radiology. Artificial intelligence, 3(4), e200221. https://doi.org/10.1148/ryai.2021200221
- McClain MT, Constantine FJ, Henao R, Liu Y, Tsalik EL, Burke TW, Steinbrink JM, Petzold E, Nicholson BP, Rolfe R, Kraft BD, Kelly MS, Saban DR, Yu C, Shen X, Ko EM, Sempowski GD, Denny TN, Ginsburg GS, Woods CW. Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nat Commun. 2021 Feb 17;12(1):1079. doi: 10.1038/s41467-021-21289-y. PMID: 33597532; PMCID: PMC7889643.
- McKenna K, Geoghegan C, Swezey T, Perry B, Wood W, Nido V, Morin S, Grabert B, Hallinan Z, Corneli A. Investigator Experiences Using Mobile Technologies in Clinical Research: Qualitative Descriptive Study JMIR Mhealth Uhealth 2021;9(2):e19242 URL: https://mhealth.jmir.org/2021/2/e19242 DOI: 10.2196/19242.
- McPeek-Hinz E, Boazak M, Sexton JB, Adair KC, West V, Goldstein BA, Alphin RS, Idris S, Hammond WE, Hwang SE, Bae J. Clinician Burnout Associated With Sex, Clinician Type, Work Culture, and Use of Electronic Health Records. JAMA Netw Open. 2021 Apr 1;4(4):e215686. doi: 10.1001/jamanetworkopen.2021.5686. PMID: 33877310.
- Miga, K. H., & Sullivan, B. A. (2021). Expanding studies of chromosome structure and function in the era of T2T genomics. Human molecular genetics, 30(R2), R198–R205. https://doi.org/10.1093/hmg/ddab214
- Misra AR, Oermann MH, Teague MS, Ledbetter LS. An Evaluation of Websites Offering Caregiver Education for Tracheostomy and Home Mechanical Ventilation. J Pediatr Nurs. 2021 Jan-Feb;56:64-69. doi: 10.1016/j.pedn.2020.09.014. Epub 2020 Nov 10. PMID: 33186865.
- Moehring RW, Phelan M, Lofgren E, Nelson A, Dodds Ashley E, Anderson DJ, Goldstein BA. Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients. JAMA Netw Open. 2021 Mar 1;4(3):e213460. doi: 10.1001/jamanetworkopen.2021.3460. PMID: 33779743.
- Movaghar A, Page D, Scholze D, Hong J, DaWalt LS, Kuusisto F, Stewart R, Brilliant M, Mailick M. Artificial intelligence-assisted phenotype discovery of fragile X syndrome in a population-based sample. Genet Med. 2021 Jul;23(7):1273-1280. doi: 10.1038/s41436-021-01144-7. Epub 2021 Mar 26. PMID: 33772223; PMCID: PMC8257481.
- Movaghar A, Page D, Brilliant M, Mailick M. Prevalence of Underdiagnosed Fragile X Syndrome in 2 Health Systems. JAMA Netw Open. 2021 Dec 1;4(12):e2141516. doi: 10.1001/jamanetworkopen.2021.41516. PMID: 34967885; PMCID: PMC8719235.
- Narcisse DI, Ford CB, Weissler EH, Lippmann SJ, Smerek MM, Greiner MA, Hardy NC, O’Brien B, Sullivan RC, Brock AJ, Long C, Curtis LH, Patel MR, Jones WS. The association of healthcare disparities and patient-specific factors on clinical outcomes in peripheral artery disease. Am Heart J. 2021 Sep;239:135-146. doi: 10.1016/j.ahj.2021.05.014. Epub 2021 May 27. PMID: 34052213.
- Movaghar A, Page D, Scholze D, Hong J, DaWalt LS, Kuusisto F, Stewart R, Brilliant M, Mailick M. Artificial intelligence-assisted phenotype discovery of fragile X syndrome in a population-based sample. Genet Med. 2021 Mar 26. doi: 10.1038/s41436-021-01144-7. Epub ahead of print. PMID: 33772223.
- Nelson AJ, Nicholls SJ. Translating evidence from clinical trials of omega-3 fatty acids to clinical practice. Future Cardiol. 2020 Jul;16(4):343-350. doi: 10.2217/fca-2019-0031. Epub 2020 Mar 17. PMID: 32180456.
- Noyd, D. H., Berkman, A., Howell, C., Power, S., Kreissman, S. G., Landstrom, A. P., Khouri, M., Oeffinger, K. C., & Kibbe, W. A. (2021). Leveraging Clinical Informatics Tools to Extract Cumulative Anthracycline Exposure, Measure Cardiovascular Outcomes, and Assess Guideline Adherence for Children With Cancer. JCO clinical cancer informatics, 5, 1062–1075. https://doi.org/10.1200/CCI.21.00099
- Noyd DH, Neely NB, Schroeder KM, Lantos PM, Power S, Kreissman SG, Oeffinger KC. Integration of cancer registry and electronic health record data to construct a childhood cancer survivorship cohort, facilitate risk stratification for late effects, and assess appropriate follow-up care. Pediatr Blood Cancer. 2021 Jun;68(6):e29014. doi: 10.1002/pbc.29014. Epub 2021 Mar 19. PMID: 33742534.
- O’Brien EC, Raman SR, Ellis A, Hammill BG, Berdan LG, Rorick T, Janmohamed S, Lampron Z, Hernandez AF, Curtis LH. The use of electronic health records for recruitment in clinical trials: a mixed methods analysis of the Harmony Outcomes Electronic Health Record Ancillary Study. Trials. 2021 Jul 19;22(1):465. doi: 10.1186/s13063-021-05397-0. PMID: 34281607; PMCID: PMC8287813.
- Oermann MH, Wrigley J, Nicoll LH, Ledbetter LS, Carter-Templeton H, Edie AH. Integrity of Databases for Literature Searches in Nursing: Avoiding Predatory Journals. ANS Adv Nurs Sci. 2021 Apr-Jun 01;44(2):102-110. doi: 10.1097/ANS.0000000000000349. PMID: 33315590; PMCID: PMC8115732.
- Orzechowski, P., Piotrowicz, R., Zareba, W., Pencina, M. J., Kowalik, I., Komar, E., Opolski, G., Banach, M., Główczyńska, R., Szalewska, D., Pluta, S., Irzmański, R., Kalarus, Z., & Piotrowicz, E. (2021). Antiarrhythmic effect of 9-week hybrid comprehensive telerehabilitation and its influence on cardiovascular mortality in long-term follow-up – subanalysis of the TELEREHabilitation in Heart Failure Patients randomized clinical trial. Archives of medical science : AMS, 18(2), 293–306. https://doi.org/10.5114/aoms/136563
- Orzechowski P, Piotrowicz R, Zaręba W, Główczyńska R, Szalewska D, Pluta S, Irzmański R, Kalarus Z, Banach M, Opolski G, Pencina MJ, Kowalik I, Piotrowicz E. Assessment of ECG during hybrid comprehensive telerehabilitation in heart failure patients-Subanalysis of the Telerehabilitation in Heart Failure Patients (TELEREH-HF) randomized clinical trial. Ann Noninvasive Electrocardiol. 2021 Nov;26(6):e12887. doi: 10.1111/anec.12887. Epub 2021 Sep 9. PMID: 34499396; PMCID: PMC8588375.
- Pasipoularides A. COVID-19, Big Data: how it will change the way we practice Medicine. QJM. 2021 Aug 29;114(5):293-295. doi: 10.1093/qjmed/hcaa299. PMID: 33151333; PMCID: PMC7665728.
- Patel SK, Kelm MJ, Bush PW, Lee HJ, Ball AM. Prevalence and risk factors of burnout in community pharmacists. J Am Pharm Assoc (2003). 2021 Mar-Apr;61(2):145-150. doi: 10.1016/j.japh.2020.09.022. Epub 2020 Oct 15. PMID: 33069594.
- Peirlinck M, Costabal FS, Yao J, Guccione JM, Tripathy S, Wang Y, Ozturk D, Segars P, Morrison TM, Levine S, Kuhl E. Precision medicine in human heart modeling : Perspectives, challenges, and opportunities. Biomech Model Mechanobiol. 2021 Feb 12. doi: 10.1007/s10237-021-01421-z. Epub ahead of print. PMID: 33580313.
- Perakslis, E., & Ginsburg, G. S. (2021). Digital Health-The Need to Assess Benefits, Risks, and Value. JAMA, 325(2), 127–128. https://doi.org/10.1001/jama.2020.22919
- Perego C, Sbolli M, Specchia C, Fiuzat M, McCaw ZR, Metra M, Oriecuia C, Peveri G, Wei LJ, O’Connor CM, Psotka MA. Utility of Restricted Mean Survival Time Analysis for Heart Failure Clinical Trial Evaluation and Interpretation. JACC Heart Fail. 2020 Dec;8(12):973-983. doi: 10.1016/j.jchf.2020.07.005. Epub 2020 Oct 7. PMID: 33039446.
- Pérez-Aldana CA, Lewinski AA, Johnson CM, Vorderstrasse AA, Myneni S. Exchanges in a Virtual Environment for Diabetes Self-Management Education and Support: Social Network Analysis. JMIR Diabetes. 2021 Jan 25;6(1):e21611. doi: 10.2196/21611. PMID: 33492236.
- Poon EG, Trent Rosenbloom S, Zheng K. Health information technology and clinician burnout: Current understanding, emerging solutions, and future directions. J Am Med Inform Assoc. 2021 Apr 23;28(5):895-898. doi: 10.1093/jamia/ocab058. PMID: 33871016; PMCID: PMC8068415.
- Rao V.N., Kelsey M.D., Kelsey A.M., Russell S.D., Mentz R.J., Patel M.R. and Fudim M. Acute cardiovascular hospitalizations and illness severity before and during the COVID‐19 pandemic. Clinical cardiology. 2021 44(5). 656-664. doi.org/10.1002/clc.23590.
- Reading Turchioe M, Volodarskiy A, Pathak J, Wright DN, Tcheng JE, Slotwiner D. Systematic review of current natural language processing methods and applications in cardiology. Heart. 2021 Oct 28:heartjnl-2021-319769. doi: 10.1136/heartjnl-2021-319769. Epub ahead of print. PMID: 34711662.
- Reese TJ, Segall N, Del Fiol G, Tonna JE, Kawamoto K, Weir C, Wright MC. Iterative heuristic design of temporal graphic displays with clinical domain experts. J Clin Monit Comput. 2021 Oct;35(5):1119-1131. doi: 10.1007/s10877-020-00571-2. Epub 2020 Aug 2. PMID: 32743757; PMCID: PMC7854828.
- Rethorn ZD, Lee AC, Rethorn TJ. Connecting at the Webside: Rapid Telehealth Implementation for Musculoskeletal Clinicians. J Orthop Sports Phys Ther. 2021 Jan;51(1):8-11. doi: 10.2519/jospt.2021.9902. Epub 2020 Oct 19. PMID: 33076758.
- Richesson, R. L., Marsolo, K. S., Douthit, B. J., Staman, K., Ho, P. M., Dailey, D., Boyd, A. D., McTigue, K. M., Ezenwa, M. O., Schlaeger, J. M., Patil, C. L., Faurot, K. R., Tuzzio, L., Larson, E. B., O’Brien, E. C., Zigler, C. K., Lakin, J. R., Pressman, A. R., Braciszewski, J. M., Grudzen, C., … Fiol, G. D. (2021). Enhancing the use of EHR systems for pragmatic embedded research: lessons from the NIH Health Care Systems Research Collaboratory. Journal of the American Medical Informatics Association : JAMIA, 28(12), 2626–2640. https://doi.org/10.1093/jamia/ocab202
- Ridgway JP, Robicsek A, Shah N, Smith BA, Singh K, Semel J, Acree ME, Grant J, Ravichandran U, Peterson LR. A Randomized Controlled Trial of an Electronic Clinical Decision Support Tool for Inpatient Antimicrobial Stewardship. Clin Infect Dis. 2021 May 4;72(9):e265-e271. doi: 10.1093/cid/ciaa1048. PMID: 32712674.
- Roth CJ, Clunie DA, Vining DJ, Berkowitz SJ, Berlin A, Bissonnette JP, Clark SD, Cornish TC, Eid M, Gaskin CM, Goel AK, Jacobs GC, Kwan D, Luviano DM, McBee MP, Miller K, Hafiz AM, Obcemea C, Parwani AV, Rotemberg V, Silver EL, Storm ES, Tcheng JE, Thullner KS, Folio LR. Multispecialty Enterprise Imaging Workgroup Consensus on Interactive Multimedia Reporting Current State and Road to the Future: HIMSS-SIIM Collaborative White Paper. J Digit Imaging. 2021 Jun 15. doi: 10.1007/s10278-021-00450-5. Epub ahead of print. PMID: 34131793.
- Sandy LC, Glorioso TJ, Weinfurt K, Sugarman J, Peterson PN, Glasgow RE, Ho PM. Leave me out: Patients’ characteristics and reasons for opting out of a pragmatic clinical trial involving medication adherence. Medicine (Baltimore). 2021 Dec 23;100(51):e28136. doi: 10.1097/MD.0000000000028136. PMID: 34941059; PMCID: PMC8702195.
- Schwartz FR, Roth CJ, Boardwine B, Hardister L, Thomas-Campbell S, Lander K, Montoya C, Jaffe TA. Electronic Health Record Closed-Loop Communication Program for Unexpected Nonemergent Findings. Radiology. 2021 Aug 10:210057. doi: 10.1148/radiol.2021210057. Epub ahead of print. PMID: 34374592.
- Skaar DA, Dietze EC, Alva-Ornelas JA, Ann D, Schones DE, Hyslop T, Sistrunk C, Zalles C, Ambrose A, Kennedy K, Idassi O, Miranda Carboni G, Gould MN, Jirtle RL, Seewaldt VL. Epigenetic Dysregulation of KCNK9 Imprinting and Triple-Negative Breast Cancer. Cancers (Basel). 2021 Nov 30;13(23):6031. doi: 10.3390/cancers13236031. PMID: 34885139; PMCID: PMC8656495.
- Simon GE, Bindman AB, Dreyer NA, Platt R, Watanabe JH, Horberg M, Hernandez A, Califf RM. When Can We Trust Real-World Data To Evaluate New Medical Treatments? Clin Pharmacol Ther. 2021 May 1. doi: 10.1002/cpt.2252. Epub ahead of print. PMID: 33932030.
- Singh, V., Pencina, M., Einstein, A. J., Liang, J. X., Berman, D. S., & Slomka, P. (2021). Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging. Scientific reports, 11(1), 14490. https://doi.org/10.1038/s41598-021-93651-5
- Sriram K, Mulder HS, Frank HR, Santanam TS, Skinner AC, Perrin EM, et al. The Dose-Response Relationship Between Physical Activity and Cardiometabolic Health in Adolescents. Am J Prev Med. 2021;60(1):95-103. PMID: 33341183 PMCID: PMC7769140.
- Stanley K, Hostyk J, Tran L, Amengual-Gual M, Dugan P, Clark J, Choi H, Tchapyjnikov D, Perucca P, Fernandes C, Andrade D, Devinsky O; pSERG Consortium, the EPIGEN Consortium, Cavalleri GL, Depondt C, Sen A, O’Brien T, Heinzen E, Loddenkemper T, Goldstein DB, Mikati MA, Delanty N. Genomic analysis of “microphenotypes” in epilepsy. Am J Med Genet A. 2022 Jan;188(1):138-146. doi: 10.1002/ajmg.a.62505. Epub 2021 Sep 27. PMID: 34569149.
- Stefan MS, Priya A, Pekow PS, Steingrub JS, Hill NS, Lagu T, Raghunathan K, Bhat AG, Lindenauer PK. A scoring system derived from electronic health records to identify patients at high risk for noninvasive ventilation failure. BMC Pulm Med. 2021 Feb 5;21(1):52. doi: 10.1186/s12890-021-01421-w. PMID: 33546651; PMCID: PMC7863252.
- Stemerman R, Bunning T, Grover J, Kitzmiller R, Patel MD. Identifying Patient Phenotype Cohorts Using Prehospital Electronic Health Record Data. Prehosp Emerg Care. 2021 Jan 25:1-14. doi: 10.1080/10903127.2020.1859658. Epub ahead of print. PMID: 33315497.
- Stingone JA, Triantafillou S, Larsen A, Kitt JP, Shaw GM, Marsillach J. Interdisciplinary data science to advance environmental health research and improve birth outcomes. Environ Res. 2021 Mar 15;197:111019. doi: 10.1016/j.envres.2021.111019. Epub ahead of print. PMID: 33737076.
- Swiecicki A, Konz N, Buda M, Mazurowski MA. A generative adversarial network-based abnormality detection using only normal images for model training with application to digital breast tomosynthesis. Sci Rep. 2021 May 13;11(1):10276. doi: 10.1038/s41598-021-89626-1. PMID: 33986361; PMCID: PMC8119417.
- Szalewska D, Glowczynska R, Piotrowicz R, Kowalik I, Pencina MJ, Opolski G, et al. An aetiology-based subanalysis of the Telerehabilitation in Heart Failure Patients (TELEREH-HF) trial. ESC Heart Fail. (2021);n/a(n/a):1-11. doi: 10.1002/ehf2.13189. Epub ahead of print. PMID: 33527740.
- Tait SD, Oshima SM, Ren Y, Fenn AE, Boazak M, Hinz EM, Hwang ES. Electronic Health Record Use by Sex Among Physicians in an Academic Health Care System. JAMA Intern Med. 2021 Feb 1;181(2):288-290. doi: 10.1001/jamainternmed.2020.5036. PMID: 33284311; PMCID: PMC7851731.
- Tcheng JE, Nguyen MV, Brann HW, Clarke PA, Pfeiffer M, Pleasants JR, Shelton GW, Kelly JF. The Medical Device Unique Device Identifier as the Single Source of Truth in Healthcare Enterprises – Roadmap for Implementation of the Clinically Integrated Supply Chain. Med Devices (Auckl). 2021 Dec 24;14:459-467. doi: 10.2147/MDER.S344132. PMID: 34992475; PMCID: PMC8714004.
- Thomas LE, Navar AM, Pencina MJ. Extrapolating Survival From Randomized Clinical Trial Data-Possibilities and Caution. JAMA Cardiol. 2021 Nov 1;6(11):1305-1307. doi: 10.1001/jamacardio.2021.2629. PMID: 34319362.
- Towbin AJ, Roth CJ, Petersilge CA, Garriott K, Buckwalter KA, Clunie DA. The Importance of Body Part Labeling to Enable Enterprise Imaging: A HIMSS-SIIM Enterprise Imaging Community Collaborative White Paper. J Digit Imaging. 2021 Feb;34(1):1-15. doi: 10.1007/s10278-020-00415-0. Epub 2021 Jan 22. PMID: 33481143; PMCID: PMC7887098.
- Vaughn, J., Shah, N., Docherty, S. L., Yang, Q., & Shaw, R. J. (2021). Symptom Monitoring in Children With Life-Threatening Illness: A Feasibility Study Using mHealth. ANS. Advances in nursing science, 44(3), 268–278. https://doi.org/10.1097/ANS.0000000000000359
- Vaughn J, Kamkhoad D, Shaw RJ, Docherty SL, Subramaniam AP, Shah N. Seriously ill pediatric patient, parent, and clinician perspectives on visualizing symptom data. J Am Med Inform Assoc. 2021 Mar 13:ocab037. doi: 10.1093/jamia/ocab037. Epub ahead of print. PMID: 33712836.
- Walsh, K. E., Razzaghi, H., Hartley, D. M., Utidjian, L., Alford, S., Darwar, R. A., Shenkman, E., Jonas, S., Goodick, M., Finkelstein, J., Ozonoff, A., Black, L. V., Shapiro, M., Shaw, K., McCafferty-Fernandez, J., Marsolo, K., Kelly, A., Werk, L. N., Smallwood, J., & Bailey, C. (2021). Testing the Use of Data Drawn from the Electronic Health Record to Compare Quality. Pediatric quality & safety, 6(4), e432. https://doi.org/10.1097/pq9.0000000000000432
- Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. medRxiv [Preprint]. 2020 Dec 22:2020.12.20.20248572. doi: 10.1101/2020.12.20.20248572. Update in: Genome Med. 2021 May 17;13(1):83. PMID: 33398303; PMCID: PMC7781346.
- Wang N, Guo L, Shewade HD, Thekkur P, Zhang H, Yuan YL, Wang XM, Wang XL, Sun MM, Huang F, Zhao YL. Effect of using electronic medication monitors on tuberculosis treatment outcomes in China: a longitudinal ecological study. Infect Dis Poverty. 2021 Mar 17;10(1):29. doi: 10.1186/s40249-021-00818-3. PMID: 33731213; PMCID: PMC7967105.
- Watanabe JH, Simon GE, Horberg M, Platt R, Hernandez A, Califf RM. When Are Treatment Blinding and Treatment Standardization Necessary in Real-World Clinical Trials? Clin Pharmacol Ther. 2021 Apr 8. doi: 10.1002/cpt.2256. Epub ahead of print. PMID: 33829639.
- Wegermann K, Wilder JM, Parish A, Niedzwiecki D, Gellad ZF, Muir AJ, Patel YA. Racial and Socioeconomic Disparities in Utilization of Telehealth in Patients with Liver Disease During COVID-19. Dig Dis Sci. 2021 Jan 28:1–7. doi: 10.1007/s10620-021-06842-5. Epub ahead of print. PMID: 33507442; PMCID: PMC7842167.
- Wilson NA, Tcheng JE, Graham J, Drozda JP Jr. Advancing Patient Safety Surrounding Medical Devices: A Health System Roadmap to Implement Unique Device Identification at the Point of Care. Med Devices (Auckl). 2021 Nov 30;14:411-421. doi: 10.2147/MDER.S339232. PMID: 34880686; PMCID: PMC8645947.
- Windle, J. R., Windle, T. A., Shamavu, K. Y., Nelson, Q. M., Clarke, M. A., Fruhling, A. L., & Tcheng, J. E. (2021). Roadmap to a more useful and usable electronic health record. Cardiovascular digital health journal, 2(6), 301–311. https://doi.org/10.1016/j.cvdhj.2021.09.007
- Wosik J, Clowse MEB, Overton R, Adagarla B, Economou-Zavlanos N, Cavalier J, et al. Impact of the COVID-19 pandemic on patterns of outpatient cardiovascular care. Am Heart J. 2021;231:1-5. PMID: 33137309 PMCID: PMC7604084.
- Xie F, Ning Y, Yuan H, Goldstein BA, Ong MEH, Liu N, Chakraborty B. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. J Biomed Inform. 2021 Nov 23;125:103959. doi: 10.1016/j.jbi.2021.103959. Epub ahead of print. PMID: 34826628.
- Xie, F., Ong, M., Liew, J., Tan, K., Ho, A., Nadarajan, G. D., Low, L. L., Kwan, Y. H., Goldstein, B. A., Matchar, D. B., Chakraborty, B., & Liu, N. (2021). Development and Assessment of an Interpretable Machine Learning Triage Tool for Estimating Mortality After Emergency Admissions. JAMA network open, 4(8), e2118467. https://doi.org/10.1001/jamanetworkopen.2021.18467
- Xie, F., Zhou, J., Lee, J. W., Tan, M., Li, S., Rajnthern, L. S., … & Liu, N. (2021). Benchmarking Predictive Risk Models for Emergency Departments with Large Public Electronic Health Records. arXiv preprint arXiv:2111.11017
- Xu Y, Lin Y, Bell RP, Towe SL, Pearson JM, Nadeem T, Chan C, Meade CS. Machine learning prediction of neurocognitive impairment among people with HIV using clinical and multimodal magnetic resonance imaging data. J Neurovirol. 2021 Feb;27(1):1-11. doi: 10.1007/s13365-020-00930-4. Epub 2021 Jan 19. PMID: 33464541; PMCID: PMC8001877.
- Yang JC, Reed SD, Hass S, Skeen MB, Johnson FR. Is Easier Better Than Harder? An Experiment on Choice Experiments for Benefit-Risk Tradeoff Preferences. Med Decis Making. 2021 Feb;41(2):222-232. doi: 10.1177/0272989X20979833. Epub 2021 Jan 19. PMID: 33463397.
- Yu P, Kibbe W. Cancer Data Science and Computational Medicine. JCO Clin Cancer Inform. 2021 May;5:487-489. doi: 10.1200/CCI.21.00006. PMID: 33950710.
- Zhang O, Ding C, Pereira T, Xiao R, Gadhoumi K, Meisel K, Lee RJ, Chen Y, Hu X. Explainability Metrics of Deep Convolutional Networks for Photoplethysmography Quality Assessment. IEEE Access. 2021;9:29736-29745. doi: 10.1109/access.2021.3054613. Epub 2021 Jan 26. PMID: 33747683; PMCID: PMC7978398.
- Zhou M, Wang Q, Zheng C, John Rush A, Volkow ND, Xu R. Drug repurposing for opioid use disorders: integration of computational prediction, clinical corroboration, and mechanism of action analyses. Mol Psychiatry. 2021 Jan 11:1–11. doi: 10.1038/s41380-020-01011-y. Epub ahead of print. PMID: 33432189; PMCID: PMC7797705.
- Zullig LL, Shahsahebi M, Neely B, Hyslop T, Avecilla RAV, Griffin BM, Clayton-Stiglbauer K, Coles T, Owen L, Reeve BB, Shah K, Shelby RA, Sutton L, Dinan MA, Zafar SY, Shah NP, Dent S, Oeffinger KC. Low-touch, team-based care for co-morbidity management in cancer patients: the ONE TEAM randomized controlled trial. BMC Fam Pract. 2021 Nov 18;22(1):234. doi: 10.1186/s12875-021-01569-8. PMID: 34794388; PMCID: PMC8600877.
- Abdulrahim, J. W., Kwee, L. C., Alenezi, F., Sun, A. Y., Baras, A., Ajayi, T. A., Henao, R., Holley, C. L., McGarrah, R. W., Daubert, J. P., Truby, L. K., Vemulapalli, S., Wang, A., Khouri, M. G., & Shah, S. H. (2020). Identification of Undetected Monogenic Cardiovascular Disorders. Journal of the American College of Cardiology, 76(7), 797–808. https://doi.org/10.1016/j.jacc.2020.06.037
- Adil, S. M., Elahi, C., Gramer, R., Spears, C. A., Fuller, A. T., Haglund, M. M., & Dunn, T. W. (2021). Predicting the Individual Treatment Effect of Neurosurgery for Patients with Traumatic Brain Injury in the Low-Resource Setting: A Machine Learning Approach in Uganda. Journal of neurotrauma, 38(7), 928–939. https://doi.org/10.1089/neu.2020.7262
- Altunel E, Roghani RS, Chen KY, Kim SY, McCall S, Ware KE, Shen X, Somarelli JA, Hsu DS. Development of a precision medicine pipeline to identify personalized treatments for colorectal cancer. BMC Cancer. 2020 Jun 24;20(1):592. doi: 10.1186/s12885-020-07090-y. PMID: 32580713; PMCID: PMC7313200.
- Arges, K., Assimes, T., Bajaj, V., Balu, S., Bashir, M. R., Beskow, L., Blanco, R., Califf, R., Campbell, P., Carin, L., Christian, V., Cousins, S., Das, M., Dockery, M., Douglas, P. S., Dunham, A., Eckstrand, J., Fleischmann, D., Ford, E., Fraulo, E., … Wong, C. A. (2020). The Project Baseline Health Study: a step towards a broader mission to map human health. NPJ digital medicine, 3, 84. https://doi.org/10.1038/s41746-020-0290-y
- Armstrong, P. W., Lam, C., Anstrom, K. J., Ezekowitz, J., Hernandez, A. F., O’Connor, C. M., Pieske, B., Ponikowski, P., Shah, S. J., Solomon, S. D., Voors, A. A., She, L., Vlajnic, V., Carvalho, F., Bamber, L., Blaustein, R. O., Roessig, L., Butler, J., & VITALITY-HFpEF Study Group (2020). Effect of Vericiguat vs Placebo on Quality of Life in Patients With Heart Failure and Preserved Ejection Fraction: The VITALITY-HFpEF Randomized Clinical Trial. JAMA, 324(15), 1512–1521. https://doi.org/10.1001/jama.2020.15922
- Bachmann, K. N., Roumie, C. L., Wiese, A. D., Grijalva, C. G., Buse, J. B., Bradford, R., Zalimeni, E. O., Knoepp, P., Dard, S., Morris, H. L., Donahoo, W. T., Fanous, N., Fonseca, V., Katalenich, B., Choi, S., Louzao, D., O’Brien, E., Cook, M. M., Rothman, R. L., & Chakkalakal, R. J. (2020). Diabetes medication regimens and patient clinical characteristics in the national patient-centered clinical research network, PCORnet. Pharmacology research & perspectives, 8(5), e00637. https://doi.org/10.1002/prp2.637
- Bae JA, Curtis LH, Hernandez AF. National Hospital Quality Rankings: Improving the Value of Information in Hospital Rating Systems [published online ahead of print, 2020 Jul 27]. JAMA. 2020;10.1001/jama.2020.11165. doi:10.1001/jama.2020.11165
- Barnholtz-Sloan, J. S., Rollison, D. E., Basu, A., Borowsky, A. D., Bui, A., DiGiovanna, J., Garcia-Closas, M., Genkinger, J. M., Gerke, T., Induni, M., Lacey, J. V., Jr, Mirel, L., Permuth, J. B., Saltz, J., Shenkman, E. A., Ulrich, C. M., Zheng, W. J., Nadaf, S., & Kibbe, W. A. (2020). Cancer Informatics for Cancer Centers (CI4CC): Building a Community Focused on Sharing Ideas and Best Practices to Improve Cancer Care and Patient Outcomes. JCO clinical cancer informatics, 4, 108–116. https://doi.org/10.1200/CCI.19.00166
- Bedoya AD, Futoma J, Clement ME, Corey K, Brajer N, Lin A, Simons MG, Gao M, Nichols M, Balu S, Heller K, Sendak M, O’Brien C. Machine learning for early detection of sepsis: an internal and temporal validation study. JAMIA Open. 2020 Apr 11;3(2):252-260. doi: 10.1093/jamiaopen/ooaa006. PMID: 32734166; PMCID: PMC7382639.
- Bedoya AD, Bhavsar NA, Adagarla B, Page CB, Goldstein BA, MacIntyre NR. Unanticipated Respiratory Compromise and Unplanned Intubations on General Medical and Surgical Floors. Respir Care. 2020;65(9):1233-40. doi: 10.4187/respcare.07438. Epub 2020 Mar 10. PMID: 32156789.
- Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit Med. 2020;3(1). doi: 10.1038/s41746-020-0226-6.
- Bent, B., Wang, K., Grzesiak, E., Jiang, C., Qi, Y., Jiang, Y., . . . Dunn, J. (2020). The Digital Biomarker Discovery Pipeline: An open source software platform for the development of digital biomarkers using mHealth and wearables data. Journal of Clinical and Translational Science, 1-28. doi:10.1017/cts.2020.511
- Bent, B., & Dunn, J. (2020). Optimizing Sampling Rate of Wrist-worn Optical Sensors for Physiologic Monitoring. Journal of Clinical and Translational Science, 1-27. doi:10.1017/cts.2020.526
- Blewer AL, Putt ME, McGovern SK, et al. A pragmatic randomized trial of cardiopulmonary resuscitation training for families of cardiac patients before hospital discharge using a mobile application. Resuscitation. 2020;152:28-35. doi:10.1016/j.resuscitation.2020.04.026
- Block JP, Marsolo KA, Nagavedu K, Bailey LC, Cruz H, Forrest CB, Hernandez AF, et al. Characteristics of 24,516 Patients Diagnosed with COVID-19 Illness in a National Clinical Research Network: Results from PCORnet. medRxiv. 2020:2020.08.01.20163733.
- Boulware, L. E., Harris, G. B., Harewood, P., Johnson, F. F., Maxson, P., Bhavsar, N., Blackwelder, S. S., Poley, S. S., Arnold, K., Akindele, B., Ferranti, J., & Lyn, M. (2020). Democratizing health system data to impact social and environmental health contexts: a novel collaborative community data-sharing model. Journal of public health (Oxford, England), 42(4), 784–792. https://doi.org/10.1093/pubmed/fdz171
- Bradley KE, Cook C, Reinke EK, et al. Comparison of the accuracy of telehealth examination versus clinical examination in the detection of shoulder pathology [published online ahead of print, 2020 Aug 29]. J Shoulder Elbow Surg. 2020;S1058-2746(20)30689-3. doi:10.1016/j.jse.2020.08.016
- Brajer N, Cozzi B, Gao M, Nichols M, Revoir M, Balu S, Futoma J, Bae J, Setji N, Hernandez A, Sendak M. Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission. JAMA Netw Open. 2020 Feb 5;3(2):e1920733. doi: 10.1001/jamanetworkopen.2019.20733. PMID: 32031645.
- Califf RM, Hernandez AF, Landray M. Weighing the Benefits and Risks of Proliferating Observational Treatment Assessments: Observational Cacophony, Randomized Harmony [published online ahead of print, 2020 Jul 31]. JAMA. 2020;10.1001/jama.2020.13319. doi:10.1001/jama.2020.13319
- Carin L. On Artificial Intelligence and Deep Learning Within Medical Education. Acad Med. 2020 Nov;95(11S Association of American Medical Colleges Learn Serve Lead: Proceedings of the 59th Annual Research in Medical Education Presentations):S10-S11. doi: 10.1097/ACM.0000000000003630. PMID: 32769462.
- Cary MP Jr, Zhuang F, Draelos RL, Pan W, Amarasekara S, Douthit BJ, Kang Y, Colón-Emeric CS. Machine Learning Algorithms to Predict Mortality and Allocate Palliative Care for Older Patients With Hip Fracture. J Am Med Dir Assoc. 2020 Oct 29:S1525-8610(20)30822-7. doi: 10.1016/j.jamda.2020.09.025. Epub ahead of print. PMID: 33132014.
- Casanova, R., Saldana, S., Lutz, M. W., Plassman, B. L., Kuchibhatla, M., & Hayden, K. M. (2020). Investigating Predictors of Cognitive Decline Using Machine Learning. The journals of gerontology. Series B, Psychological sciences and social sciences, 75(4), 733–742. https://doi.org/10.1093/geronb/gby054
- Chang B, Sun Z, Peiris P, Huang ES, Benrashid E, Dillavou ED. Deep Learning-Based Risk Model for Best Management of Closed Groin Incisions After Vascular Surgery. J Surg Res. 2020;254:408-416. doi:10.1016/j.jss.2020.02.012
- Chen YJ, Zee J, Smith A, Jayapandian C, Hodgin J, Howell D, et al. Assessment of a computerized quantitative quality control tool for whole slide images of kidney biopsies. J Pathol. (2020);n/a(n/a):1-1doi: 10.1002/path.55901.
- Cho, A.H., Namdari, N.T., Bowlby, L., Zipkin, D.A., Greenblatt, L., Causey, H.E., … Boulware, L.E. (2020). Multiyear Outcomes of a Population-Oriented Care Redesign in an Internal Medicine Residency Continuity Clinic. Journal of Health Care for the Poor and Underserved 31(2), 724-741. doi:10.1353/hpu.2020.0057.
- Chowdhury AS, Lofgren ET, Moehring RW, Broschat SL. Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach. Journal of applied microbiology. 2020 Mar;128(3):688-96.
- Cieslowski B, Brock L, Richesson RL, Silva S, Kim H. Optimization of Nursing-Specific Flu Alerts. CIN: Computers, Informatics, Nursing. 9000;Publish Ahead of Print. doi: 10.1097/CIN.0000000000000616
- Cope H, Spillmann R, Rosenfeld JA, et al. Missed diagnoses: Clinically relevant lessons learned through medical mysteries solved by the Undiagnosed Diseases Network [published online ahead of print, 2020 Jul 30]. Mol Genet Genomic Med. 2020;e1397. doi:10.1002/mgg3.1397
- Corey KM, Helmkamp J, Simons M, Curtis L, Marsolo K, Balu S, et al. Assessing Quality of Surgical Real-World Data from an Automated Electronic Health Record Pipeline. J Am Coll Surg. 2020;230(3):295-+. doi: 1016/j.jamcollsurg.2019.12.005
- Cox CE, Olsen MK, Casarett D, Haines K, Al-Hegelan M, Bartz RR, et al. Operationalizing needs-focused palliative care for older adults in intensive care units: Design of and rationale for the PCplanner randomized clinical trial. Contemp Clin Trials. 2020;98. doi: 10.1016/j.cct.2020.106163
- Crowson MG, Witsell D, Eskander A. Using Google Trends to Predict Pediatric Respiratory Syncytial Virus Encounters at a Major Health Care System. J Med Syst. 2020;44(3):57. Published 2020 Jan 30. doi:10.1007/s10916-020-1526-8
- Douthit BJ, Hu X, Richesson RL, Kim H, Cary Jr MP. How Artificial Intelligence is Transforming the Future of Nursing. American Nurse. Published 2020 September 6. doi.org/10.1145/3351095.3372827
- Douthit BJ, Musser RC, Lytle KS, Richesson RL. A Closer Look at the “Right” Format for Clinical Decision Support: Methods for Evaluating a Storyboard BestPractice Advisory. J Pers Med. 2020 Sep 23;10(4):E142. doi: 10.3390/jpm10040142. PMID: 32977564.
- Draelos RL, Dov D, Mazurowski MA, Lo JY, Henao R, Rubin GD, Carin L. Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes. Med Image Anal. 2020 Oct 9;67:101857. doi: 10.1016/j.media.2020.101857. Epub ahead of print. PMID: 33129142.
- Durand WM, Daniels AH, Hamilton DK, Passias P, Kim HJ, Protopsaltis T, Shaffrey C, et al. Artificial Intelligence Models Predict Operative Versus Nonoperative Management of Patients with Adult Spinal Deformity with 86% Accuracy. World Neurosurg. 2020;141:E239-E53. doi: 10.1016/j.wneu.2020.05.099. Epub 2020 May 17. PMID: 32434029.
- Eisenstein EL, Garza MY, Rocca M, Gordon GS, Zozus M. eSource-Enabled vs. Traditional Clinical Trial Data Collection Methods: A Site-Level Economic Analysis. Stud Health Technol Inform. 2020;270:961-965. doi:10.3233/SHTI200304
- Eng, S., Olazagasti, J. M., Goldenberg, A., Crowson, C. S., Oddis, C. V., Niewold, T. B., Yeung, R., & Reed, A. M. (2020). A Clinically and Biologically Based Subclassification of the Idiopathic Inflammatory Myopathies Using Machine Learning. ACR open rheumatology, 2(3), 158–166. https://doi.org/10.1002/acr2.11115
- Engelhard MM, Berchuck SI, Garg J, Henao R, Olson A, Rusincovitch S, et al. Health system utilization before age 1 among children later diagnosed with autism or ADHD. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-74458-2
- Engelhard, M. M., Oliver, J. A., & McClernon, F. J. (2020). Digital envirotyping: quantifying environmental determinants of health and behavior. NPJ digital medicine, 3, 36. https://doi.org/10.1038/s41746-020-0245-3
- Fayanju OM, Ren Y, Stashko I, Power S, Thornton MJ, Marcom PK, et al. Patient-reported causes of distress predict disparities in time to evaluation and time to treatment after breast cancer diagnosis. Cancer. (2020);n/a(n/a):1-12. doi: 10.1002/cncr.33310
- Flaherty KT, Gray R, Chen A, Kibbe W, et al. THE MOLECULAR ANALYSIS FOR THERAPY CHOICE (NCI-MATCH) TRIAL: LESSONS for GENOMIC TRIAL DESIGN [published online ahead of print, 2020 Jan 10]. J Natl Cancer Inst. 2020;djz245. doi:10.1093/jnci/djz245
- Forrest CB, McTigue KM, Hernandez AF, et al. PCORnet® 2020: Current State, Accomplishments, and Future Directions [published online ahead of print, 2020 Sep 28]. J Clin Epidemiol. 2020;S0895-4356(20)31122-7. doi:10.1016/j.jclinepi.2020.09.036
- Franklin MS, Silva SG, Maslow GR, Halpern CT, Merwin EI, Docherty SL. Identifying Individuals With Intellectual Disability Within a Population Study. Nurs Res. 2020;69(6):436-47. doi: 10.1097/NNR.0000000000000469
- Fridman I, Lucas N, Henke D, Zigler CK. Association Between Public Knowledge About COVID-19, Trust in Information Sources, and Adherence to Social Distancing: Cross-Sectional Survey. JMIR Public Health Surveill. 2020;6(3):e22060. Published 2020 Sep 15. doi:10.2196/22060
- Gagliardi JP, Bonanno B, McPeek-Hinz ER, Musser RC, Knudsen NW, Palko M, McNair F, Lee HJ, Clay AS. Implementation of Changes to Medical Student Documentation at Duke University Health System: Balancing Education With Service. Acad Med. 2020 Sep 8. doi: 10.1097/ACM.0000000000003729. Epub ahead of print. PMID: 32909999.
- Gallagher D, Zhao C, Brucker A, et al. Implementation and Continuous Monitoring of an Electronic Health Record Embedded Readmissions Clinical Decision Support Tool. J Pers Med. 2020;10(3):E103. Published 2020 Aug 26. doi:10.3390/jpm10030103
- Goldsack JC, Coravos A, Bakker JP, Bent B, Dunn J, et al. Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit Med. 2020;3:55. Published 2020 Apr 14. doi:10.1038/s41746-020-0260-4
- Goldstein BA. Five analytic challenges in working with electronic health records data to support clinical trials with some solutions [published online ahead of print, 2020 Jun 26]. Clin Trials. 2020;1740774520931211. doi:10.1177/1740774520931211
- Goldstein BA, Bedoya AD. Guiding Clinical Decisions Through Predictive Risk Rules. JAMA Netw Open. 2020;3(8):e2013101. Published 2020 Aug 3. doi:10.1001/jamanetworkopen.2020.13101
- Goldstein BA, Cerullo M, Krishnamoorthy V, Blitz J, Mureebe L, Webster W, Dunston F, Stirling A, Gagnon J, Scales CD Jr. Development and Performance of a Clinical Decision Support Tool to Inform Resource Utilization for Elective Operations. JAMA Netw Open. 2020 Nov 2;3(11):e2023547. doi: 10.1001/jamanetworkopen.2020.23547. PMID: 33136133; PMCID: PMC7607444.
- Goldstein BA, Pencina MJ. Testing Clinical Prediction Models. JAMA. 2020 Nov 17;324(19):1998-1999. doi: 10.1001/jama.2020.19392. PMID: 33201199.
- Haga SB, Shaw R, Kneifel C, Bond SJ, Ginsburg GS. Promoting Wellness Through Mobile Health Technology in a College Student Population: Protocol Development and Pilot Study. JMIR Res Protoc 2020;9(4):e16474. doi: 10.2196/16474
- Hankins, J. S., & Shah, N. (2020). Tackling adherence in sickle cell disease with mHealth. The Lancet. Haematology, 7(10), e713–e714. https://doi.org/10.1016/S2352-3026(20)30299-4
- Hastings SN, Stechuchak KM, Choate A, Mahanna EP, Van Houtven C, Allen KD, et al. Implementation of a stepped wedge cluster randomized trial to evaluate a hospital mobility program. Trials. 2020;21(1). doi: 10.1186/s13063-020-04764-7
- Hazen KC, Polage CR. Using Data to Optimize Blood Bottle Fill Volumes and Pathogen Detection: Making Blood Cultures Great Again. Clin Infect Dis. 2020;70(2):269-270. doi:10.1093/cid/ciz203
- He J, Ghorveh MG, Hurst JH, Tang M, Alhanti B, Lang JE, Goldstein BA. Evaluation of associations between asthma exacerbations and distance to roadways using geocoded electronic health records data. BMC Public Health. 2020 Oct 29;20(1):1626. doi: 10.1186/s12889-020-09731-0. PMID: 33121457; PMCID: PMC7599107.
- Hickey T, Bakken S, Byrne MW, Bailey DCE, Docherty S, et al. Corrigendum to Precision health: Advancing symptom and self-management science [published online ahead of print, 2020 Feb 8]. Nurs Outlook. 2020;S0029-6554(19)30718-3. doi:10.1016/j.outlook.2019.11.003
- Hong JC, Eclov NCW, Dalal NH, et al. System for High-Intensity Evaluation During Radiation Therapy (SHIELD-RT): A Prospective Randomized Study of Machine Learning-Directed Clinical Evaluations During Radiation and Chemoradiation [published online ahead of print, 2020 Sep 4]. J Clin Oncol. 2020;JCO2001688. doi:10.1200/JCO.20.01688
- Hong, J. C., Fairchild, A. T., Tanksley, J. P., Palta, M., & Tenenbaum, J. D. (2020). Natural language processing for abstraction of cancer treatment toxicities: accuracy versus human experts. JAMIA open, 3(4), 513–517. https://doi.org/10.1093/jamiaopen/ooaa064
- Hurst, J., Liu, Y., Maxson, P., Permar, S., Boulware, L., & Goldstein, B. (2020). Development of an electronic health records datamart to support clinical and population health research. Journal of Clinical and Translational Science, 1-6. doi:10.1017/cts.2020.499
- Im EO, Yi JS, Kim H, Chee W. A technology-based information and coaching/support program and self-efficacy of Asian American breast cancer survivors [published online ahead of print, 2020 Jul 30]. Res Nurs Health. 2020;10.1002/nur.22059. doi:10.1002/nur.22059
- Inan OT, Tenaerts P, Prindiville SA, Reynolds HR, Dizon DS, Cooper-Arnold K, et al. Digitizing clinical trials. NPJ Digit Med. 2020;3(1):101.
- Jackson GL, Cutrona SL, Kilbourne A, White BS, Everett C, Damschroder LJ. Implementation science: Helping healthcare systems improve. JAAPA. 2020;33(1):51–53. doi: 10.1097/01.JAA.0000615508.92677.66
- Jia X, Ren L, Cai J. Clinical implementation of AI technologies will require interpretable AI models. Med Phys. 2020;47(1):1-4. doi:10.1002/mp.13891
- Jones M, DeRuyter F, Morris J. The Digital Health Revolution and People with Disabilities: Perspective from the United States. Int J Environ Res Public Health. 2020;17(2):E381. Published 2020 Jan 7. doi:10.3390/ijerph17020381doi:10.1097/01.JAA.0000615508.92677.66
- Kansal AD, Fanaroff A, Green C, Patel MR, Wang TY, Newby LKK, et al. Abstract 327: Electronic Health Record Integration of Predictive Analytics to Select High-risk Stable Patients With Non-st-segment Elevation Myocardial Infarction for Intensive Care Unit Admission. Circulation: Cardiovascular Quality and Outcomes. 2020;13(Suppl_1):A327-A.
- Kelm MJ, Bush PW. Digital content delivery in a pharmacy technician training program in a health system. Am J Health Syst Pharm. 2020;77(4):295-299. doi:10.1093/ajhp/zxz255
- Kim H, Eltz AJ. Representing Nursing Data With Fast Healthcare Interoperability Resources: Early Lessons Learned With a Use Case Scenario on Home-Based Pressure Ulcer Care. Comput Inform Nurs. 2020;38(4):190-197. doi:10.1097/CIN.0000000000000564
- Kim H, Kim J, Taira R. Ambiguity in Communicating Intensity of Physical Activity: Survey Study. JMIR Public Health Surveill. 2020;6(2):e16303. Published 2020 May 28. doi:10.2196/16303
- Kobe EA, Edelman D, Tarkington PE, Bosworth HB, Maciejewski ML, Steinhauser K, et al. Practical telehealth to improve control and engagement for patients with clinic-refractory diabetes mellitus (PRACTICE-DM): Protocol and baseline data for a randomized trial. Contemp Clin Trials. 2020;98. doi: 10.1016/j.cct.2020.106157
- Kollins SH. Editorial: From risk prediction to action: leveraging electronic health records to improve pediatric population mental health. J Child Psychol Psychiatry. 2020;61(2):113–115. doi:10.1111/jcpp.13199
- Kwan YH, Weng SD, Loh DHF, Phang JK, Oo LJY, Blalock DV, et al. Measurement Properties of Existing Patient-Reported Outcome Measures on Medication Adherence: Systematic Review. J Med Internet Res. 2020;22(10). doi: 10.2196/19179
- Lang JE, Tang M, Zhao C, Hurst J, Wu A, Goldstein BA. Well-Child Care Attendance and Risk of Asthma Exacerbations. Pediatrics. 2020;146(6). doi: 10.1542/peds.2020-1023
- Larson IA, Colvin JD, Hoffman A, Colliton WS, Shaw RJ. Caring for Children With Medical Complexity With the Emergency Information Form. Pediatr Emerg Care. 2020 Jan;36(1):57-61. doi: 10.1097/PEC.0000000000002021. PMID: 31895202.
- Le E, Shrader P, Bosworth H, et al. Provision and Utilization of Team- and Community-Based Operative Care for Patients With Cleft Lip/Palate in North Carolina [published online ahead of print, 2020 Aug 26]. Cleft Palate Craniofac J. 2020;1055665620946565. doi:10.1177/1055665620946565
- Loring Z, Mehrotra S, Piccini JP, Camm J, Carlson D, Fonarow GC, et al. Machine learning does not improve upon traditional regression in predicting outcomes in atrial fibrillation: an analysis of the ORBIT-AF and GARFIELD-AF registries. Europace. 2020;22(11):1635-44. doi: 10.1093/europace/euaa172.
- Luo N, Hammill BG, DeVore AD, Xu HL, Fonarow GC, Albert NM, et al. Outcomes and cost among Medicare beneficiaries hospitalized for heart failure assigned to accountable care organizations. Am Heart J. 2020;226:13-23. doi: 10.1016/j.ahj.2020.04.028
- Manolio TA, Goodhand P, Ginsburg G. The International Hundred Thousand Plus Cohort Consortium: integrating large-scale cohorts to address global scientific challenges. Lancet Digit Health. 2020;2(11):E567-E8. doi: 10.1016/S2589-7500(20)30242-9
- Marquis-Gravel G, Roe MT, Robertson HR, et al. Rationale and Design of the Aspirin Dosing-A Patient-Centric Trial Assessing Benefits and Long-term Effectiveness (ADAPTABLE) Trial. JAMA Cardiol. 2020;5(5):598-607. doi:10.1001/jamacardio.2020.0116
- Mariottoni EB, Datta S, Dov D, Jammal AA, Berchuck SI, Tavares IM, et al. Artificial Intelligence Mapping of Structure to Function in Glaucoma. Transl Vis Sci Technol. 2020;9(2). doi: 10.1167/tvst.9.2.19
- Mavromoustakis CX, Mukherjee M, Mastorakis G, Song H, Gorlatova M, Aazam M. Guest Editorial Special Issue on Emerging Trends and Challenges in Fog Computing for IoT. IEEE Internet Things J. 2020;7(5):4155-9.
- Mazurowski M. A. (2020). Artificial Intelligence in Radiology: Some Ethical Considerations for Radiologists and Algorithm Developers. Academic radiology, 27(1), 127–129. https://doi.org/10.1016/j.acra.2019.04.024
- Mukhejee M, Gorlatova M, Gross J and Aazam M, IEEE Access Special Section Editorial: Sustainable Infrastructures, Protocols, and Research Challenges for FOG Computing. IEEE Access, vol. 8, pp. 110943-110946, 2020, doi: 10.1109/ACCESS.2020.3000845.
- Nafee, T., Gibson, C. M., Travis, R., Yee, M. K., Kerneis, M., Chi, G., AlKhalfan, F., Hernandez, A. F., Hull, R. D., Cohen, A. T., Harrington, R. A., & Goldhaber, S. Z. (2020). Machine learning to predict venous thrombosis in acutely ill medical patients. Research and practice in thrombosis and haemostasis, 4(2), 230–237. https://doi.org/10.1002/rth2.12292
- Ni Z, Atluri N, Shaw RJ, Tan JR, Khan K, Merk H, et al. Evaluating the Feasibility and Acceptability of a Mobile Health-Based Female Community Health Volunteer Program for Hypertension Control in Rural Nepal: Cross-Sectional Study. JMIR mHealth uHealth. 2020;8(3). doi: 10.2196/15419.
- Nicoll LH, Oermann MH, Carter-Templeton H, Owens JK, Edie AH. A bibliometric analysis of articles identified by editors as representing excellence in nursing publication: Replication and extension. J Adv Nurs. 2020;76(5):1247-1254. doi:10.1111/jan.14316
- O’Brien C, Goldstein BA, Shen Y, Phelan M, Lambert C, Bedoya AD, Steorts RC. Development, Implementation, and Evaluation of an In-Hospital Optimized Early Warning Score for Patient Deterioration. MDM Policy Pract. 2020 Jan 10;5(1):2381468319899663. doi: 10.1177/2381468319899663. PMID: 31976373; PMCID: PMC6956604.
- Oermann MH, Nicoll LH, Ashton KS, et al. Analysis of Citation Patterns and Impact of Predatory Sources in the Nursing Literature. J Nurs Scholarsh. 2020;52(3):311-319. doi:10.1111/jnu.12557
- Olsen CR, Mentz RJ, Anstrom KJ, Page D, Patel PA. Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure. Am Heart J. 2020;229(n/a):1-17. doi: 10.1016/j.ahj.2020.07.009
- Omboni S, McManus RJ, Bosworth HB, et al. Evidence and Recommendations on the Use of Telemedicine for the Management of Arterial Hypertension: An International Expert Position Paper [published online ahead of print, 2020 Sep 14]. Hypertension. 2020;HYPERTENSIONAHA12015873. doi:10.1161/HYPERTENSIONAHA.120.15873
- Orlando LA, Wu RR, Myers RA, Neuner J, McCarty C, Haller IV, et al. At the intersection of precision medicine and population health: an implementation-effectiveness study of family health history based systematic risk assessment in primary care. BMC Health Serv Res. 2020;20(1). doi: 10.1186/s12913-020-05868-1
- Pattarabnjird T, Cress C, Nguyen A, Taylor A, Bekiranov S, McNamara C. A Machine Learning Model Utilizing a Novel SNP Shows Enhanced Prediction of Coronary Artery Disease Severity. Genes. 2020;11(12). doi: 10.3390/genes11121446
- Pencina, M. J., Goldstein, B. A., & D'Agostino, R. B. (2020). Prediction Models - Development, Evaluation, and Clinical Application. The New England journal of medicine, 382(17), 1583–1586. https://doi.org/10.1056/NEJMp2000589
- Perakslis E. A Primer on Biodefense Data Science for Pandemic Preparedness. Patterns (N Y). 2020;1(1):100018. doi:10.1016/j.patter.2020.100018
- Pletcher MJ, Fontil V, Carton T, Choi S, O’Brien EC, et al. The PCORnet Blood Pressure Control Laboratory: A Platform for Surveillance and Efficient Trials. Circ Cardiovasc Qual Outcomes. 2020;13(3):e006115. doi:10.1161/CIRCOUTCOMES.119.006115
- Pluta S, Piotrowicz E, Piotrowicz R, Lewicka E, Zareba W, Koziel M, Pencina MJ, et al. Remote Monitoring of Cardiac Implantable Electronic Devices in Patients Undergoing Hybrid Comprehensive Telerehabilitation in Comparison to the Usual Care. Subanalysis from Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomised Clinical Trial. J Clin Med. 2020;9(11). doi: 10.3390/jcm9113729
- Reese TJ, Del Fiol G, Tonna JE, Segall N, et al. Impact of integrated graphical display on expert and novice diagnostic performance in critical care [published online ahead of print, 2020 Jun 17]. J Am Med Inform Assoc. 2020;ocaa086. doi:10.1093/jamia/ocaa086
- Richesson RL, Staes CJ, Douthit BJ, Thoureen T, Hatch DJ, Kawamoto K, et al. Measuring implementation feasibility of clinical decision support alerts for clinical practice recommendations. J Am Med Inf Assoc. 2020 Apr 1;27(4):514-521. doi: 10.1093/jamia/ocz225
- Richesson, RL, Bray, BE, Dymek, C, et al. Summary of second annual MCBK public meeting: Mobilizing Computable Biomedical Knowledge—A movement to accelerate translation of knowledge into action. Learn Health Sys. 2020;e10222. doi.org/10.1002/lrh2.10222
- Rockhold FW, Tenenbaum JD, Richesson R, Marsolo KA, O’Brien EC. Design and analytic considerations for using patient-reported health data in pragmatic clinical trials: : report from an NIH Collaboratory roundtable. J Am Med Inform Assoc. 2020;27(4):634–638. doi:10.1093/jamia/ocz226
- Sandhu S, Lin AL, Brajer N, Sperling J, Ratliff W, Bedoya AD, et al. Integrating a Machine Learning System Into Clinical Workflows: Qualitative Study. J Med Internet Res. 2020;22(11). doi: 10.2196/22421
- Sawyer, J. K., Kabiri, Z., Montague, R. A., Allen, S. R., Stewart, R., Paramore, S. V., Cohen, E., Zaribafzadeh, H., Counter, C. M., & Fox, D. T. (2020). Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo. PLoS genetics, 16(12), e1009228. https://doi.org/10.1371/journal.pgen.1009228
- Semmes EC, Vijayakrishnan J, Zhang CN, Hurst JH, Houlston RS, Walsh KM. Leveraging Genome and Phenome-Wide Association Studies to Investigate Genetic Risk of Acute Lymphoblastic Leukemia. Cancer Epidemiol Biomarkers Prev. 2020;29(8):1606-14. doi: 10.1158/1055-9965.EPI-20-0113. Epub 2020 May 28. PMID: 32467347; PMCID: PMC7415687.
- Sendak MP, Ratliff W, Sarro D, Alderton E, Futoma J, Gao M, Nichols M, Revoir M, Yashar F, Miller C, Kester K, Sandhu S, Corey K, Brajer N, Tan C, Lin A, Brown T, Engelbosch S, Anstrom K, Elish MC, Heller K, Donohoe R, Theiling J, Poon E, Balu S, Bedoya A, O’Brien C. Real-World Integration of a Sepsis Deep Learning Technology Into Routine Clinical Care: Implementation Study. JMIR Med Inform. 2020;8(7):e15182. DOI: 10.2196/15182
- Sendak M, Elish MC, Gao M, Futoma J, Ratliff W, Nichols M, et al. “The human body is a black box”: supporting clinical decision-making with deep learning. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency;
- Sendak MP, Gao M, Brajer N, Balu S. Presenting machine learning model information to clinical end users with model facts labels. NPJ Digit Med. 2020;3:41. Published 2020 Mar 23. doi:10.1038/s41746-020-0253-3
- Sendak MP, D’Arcy J, Kashyap S, Gao M, Nichols M, Corey K, Ratliff W, Balu S. A path for translation of machine learning products into healthcare delivery. EMJ Innov. 2020:19-00172. doi.org/10.33590/emjinnov/19-00172
- Shah A, Polascik TJ, George DJ, Anderson J, Hyslop T, Ellis AM, et al. Implementation and Impact of a Risk-Stratified Prostate Cancer Screening Algorithm as a Clinical Decision Support Tool in a Primary Care Network. J Gen Intern Med. (2020);n/a(n/a):1-8. doi: 10.1007/s11606-020-06124-2. Epub ahead of print. PMID: 32875501.
- Shah N, Beenhouwer D, Broder MS, Bronte-Hall L, De Castro LM, Gibbs SN, et al. Development of a Severity Classification System for Sickle Cell Disease. Clinicoeconomics Outcomes Res. 2020;12:625-33. doi: 10.2147/CEOR.S276121
- Shaw RJ, Yang Q, Barnes A, Hatch D, Crowley MJ, Vorderstrasse A, et al. Self-monitoring diabetes with multiple mobile health devices. J Am Med Inf Assoc. 2020. doi: 10.1093/jamia/ocaa007
- Shaw R, Stroo M, Fiander C, McMillan K. Selecting Mobile Health Technologies for Electronic Health Record Integration: Case Study. J Med Internet Res. 2020;22(10). doi: 10.2196/23314
- Shepherd-Banigan, M., Smith, V. A., Lindquist, J. H., Cary, M. P., Jr, Miller, K., Chapman, J. G., & Van Houtven, C. H. (2020). Identifying treatment effects of an informal caregiver education intervention to increase days in the community and decrease caregiver distress: a machine-learning secondary analysis of subgroup effects in the HI-FIVES randomized clinical trial. Trials, 21(1), 189. https://doi.org/10.1186/s13063-020-4113-x
- Sim I, Stebbins M, Bierer BE, Butte AJ, Drazen J, Dzau V, Hernandez AF, Krumholz HM, Lo B, Munos B, Perakslis E, Rockhold F, Ross JS, Terry SF, Yamamoto KR, Zarin DA, Li R. Time for NIH to lead on data sharing. Science. 2020 Mar 20;367(6484):1308-1309. doi: 10.1126/science.aba4456. PMID: 32193313.
- Simon GE, Richesson RL, Hernandez AF. Disseminating trial results: We can have both faster and better. Healthc (Amst). 2020 Sep 24;8(4):100474. doi: 10.1016/j.hjdsi.2020.100474. Epub ahead of print. PMID: 32992107; PMCID: PMC7511992.
- Sonstein SA, Namenek Brouwer RJ, Gluck W, et al. Leveling the Joint Task Force Core Competencies for Clinical Research Professionals. Ther Innov Regul Sci. 2020;54(1):1-20. doi:10.1007/s43441-019-00024-2
- Stagg B, Mariottoni E, Berchuck S, Jammal AA, Hess R, Kawamoto K, et al. The association between race and longitudinal visual field variability. Invest Ophthalmol Vis Sci. 2020;61(7):4045
- Stagg BC, Stein JD, Medeiros FA, et al. Special Commentary: Using Clinical Decision Support Systems to Bring Predictive Models to the Glaucoma Clinic [published online ahead of print, 2020 Aug 15]. Ophthalmol Glaucoma. 2020;S2589-4196(20)30212-X. doi:10.1016/j.ogla.2020.08.006
- Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP. Recommendations for Reporting Machine Learning Analyses in Clinical Research. Circ-Cardiovasc Qual Outcomes. 2020;13(10):no. e006556. doi: 10.1161/CIRCOUTCOMES.120.006556
- Stirling A, Tubb T, Reiff ES, Grotegut CA, Gagnon J, Li W, Poon, EG, Goldstein, BA, et al. Identified themes of interactive visualizations overlayed onto EHR data: an example of improving birth center operating room efficiency. J Am Med Inf Assoc. 2020. doi: 10.1093/jamia/ocaa016
- Stroo, M., Asfaw, K., Deeter, C., Freel, S. A., Brouwer, R., Hames, B., & Snyder, D. C. (2020). Impact of implementing a competency-based job framework for clinical research professionals on employee turnover. Journal of clinical and translational science, 4(4), 331–335. https://doi.org/10.1017/cts.2020.22
- Swamy GK, Grotegut CA. Can a Structured, Electronic Approach to Shared Decision-making Increase Attempted Trial of Labor?. JAMA. 2020;323(21):2145-2146. doi:10.1001/jama.2020.5947
- Tcheng JE, Drozda JP, Gabriel D, et al. Achieving Data Liquidity: Lessons Learned from Analysis of 38 Clinical Registries (The Duke-Pew Data Interoperability Project. AMIA Annu Symp Proc. 2020;2019:864-873. Published 2020 Mar 4.
- Tcheng, J. E., Fleurence, R., & Sedrakyan, A. (2020). Electronic health data quality maturity model for medical device evaluations. BMJ surgery, interventions, & health technologies, 2(1), e000043. https://doi.org/10.1136/bmjsit-2020-000043
- Thomas L, Li F, Pencina M. Using Propensity Score Methods to Create Target Populations in Observational Clinical Research [published online ahead of print, 2020 Jan 10]. JAMA. 2020;10.1001/jama.2019.21558. doi:10.1001/jama.2019.21558
- Thomas LE, Bonow RO, Pencina MJ. Understanding Observational Treatment Comparisons in the Setting of Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(9):988-990. doi:10.1001/jamacardio.2020.1874
- Thompson AC, Jammal AA, Berchuck SI, Mariottoni EB, Medeiros FA. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans [published online ahead of print, 2020 Feb 13]. JAMA Ophthalmol. 2020;138(4):333-339. doi:10.1001/jamaophthalmol.2019.5983
- Tsai C, Bellantoni J, Martinez-Uribe O, Peyser B. Training in the Era of EHR: Examining the Experience of Medical Student Documentation in the Ambulatory Care Setting. MedEdPublish, 2020; 9, [1], 56, https://doi.org/10.15694/mep.2020.000056.1
- VanSandt M, Turner K, Dash R, et al. Pathologist Opinions about EPIC Beaker AP: a Multi-Institutional Survey of Early Adopters. J Med Syst. 2020;44(6):111. Published 2020 May 6. doi:10.1007/s10916-020-01574-x
- Vasudevan L, Ostermann J, Moses SM, Ngadaya E, Mfinanga SG. Patterns of Mobile Phone Ownership and Use Among Pregnant Women in Southern Tanzania: Cross-Sectional Survey. JMIR Mhealth Uhealth. 2020;8(4):e17122. Published 2020 Apr 8. doi:10.2196/17122
- Vaughn J, Gollarahalli S, Shaw RJ, Docherty S, Shah N, et al. Mobile Health Technology for Pediatric Symptom Monitoring: A Feasibility Study. Nurs Res. 2020;69(2):142–148. doi:10.1097/NNR.0000000000000403
- Vaughn J, Shah N, Jonassaint J, Harris N, Docherty S, Shaw R. User-Centered App Design for Acutely Ill Children and Adolescents [published online ahead of print, 2020 Jul 10]. J Pediatr Oncol Nurs. 2020;1043454220938341. doi:10.1177/1043454220938341
- Walden A, Garvin L, Smerek M, Johnson C. User-centered design principles in the development of clinical research tools [published online ahead of print, 2020 Aug 20]. Clin Trials. 2020;1740774520946314. doi:10.1177/1740774520946314
- Wang F, Schilsky RL, Page D, Califf RM, Cheung K, *Wang XF, et al. Development and Validation of a Natural Language Processing Tool to Generate the CONSORT Reporting Checklist for Randomized Clinical Trials. JAMA Netw Open. 2020;3(10). doi: 10.1001/jamanetworkopen.2020.14661
- Watson J, Hutyra CA, Clancy SM, et al. Overcoming barriers to the adoption and implementation of predictive modeling and machine learning in clinical care: what can we learn from US academic medical centers? JAMIA Open. 2020;3(2):167-172. Published 2020 Apr 10. doi:10.1093/jamiaopen/ooz046
- Wei S, McConnell ES, Wright-Freeman K, Woodward A, Kang B, Corazzini KN. Measurement of older adults’ social networks using technologies in the context of health and social care: a scoping review protocol. JBI Evid Synth. 2020;18(4):814-823. doi:10.11124/JBISRIR-D-18-00008
- Weissler EH, Lippmann SJ, Smerek MM, et al. Model-Based Algorithms for Detecting Peripheral Artery Disease Using Administrative Data From an Electronic Health Record Data System: Algorithm Development Study. JMIR Med Inform. 2020;8(8):e18542. Published 2020 Aug 19. doi:10.2196/18542
- Weissler EH, Zhang JK, Lippmann S, Rusincovitch S, Henao R, Jones WS. Use of Natural Language Processing to Improve Identification of Patients With Peripheral Artery Disease. Circ-Cardiovasc Interv. 2020;13(10). doi: 10.1161/CIRCINTERVENTIONS.120.009447
- Westra BL, Lytle KS, Whittenburg L, et al. A refined methodology for validation of information models derived from flowsheet data and applied to a genitourinary case [published online ahead of print, 2020 Sep 17]. J Am Med Inform Assoc. 2020;ocaa166. doi:10.1093/jamia/ocaa166
- Wildman-Tobriner, B., Thorpe, M. P., Said, N., Ehieli, W. L., Roth, C. J., & Jaffe, T. A. (2020). Moving Radiology Workflow to the Electronic Health Record: Quantitative and Qualitative Experience From a Large Academic Medical Center. Academic radiology, 27(2), 253–259. https://doi.org/10.1016/j.acra.2019.02.006
- Williams CM, Chaturvedi R, Chakravarthy K. Cybersecurity Risks in a Pandemic. J Med Internet Res. 2020;22(9):e23692. Published 2020 Sep 17. doi:10.2196/23692
- Wisely CE, Wang D, Henao R, Grewal DS, Thompson AC, Robbins CB, Yoon SP, Soundararajan S, Polascik BW, Burke JR, Liu A, Carin L, Fekrat S. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol. 2020 Nov 26:bjophthalmol-2020-317659. doi: 10.1136/bjophthalmol-2020-317659. Epub ahead of print. PMID: 33243829.
- Woo M, Alhanti B, Lusk S, et al. Evaluation of ML-Based Clinical Decision Support Tool to Replace an Existing Tool in an Academic Health System: Lessons Learned. J Pers Med. 2020;10(3):E104. Published 2020 Aug 27. doi:10.3390/jpm10030104
- Woody SK, Burdick D, Lapp H, Huang ES. Application programming interfaces for knowledge transfer and generation in the life sciences and healthcare. NPJ Digit Med. 2020;3(1). doi: 10.1038/s41746-020-0235-5
- Wosik J, Fudim M, Cameron B, et al. Telehealth transformation: COVID-19 and the rise of virtual care. J Am Med Inform Assoc. 2020;27(6):957-962. doi:10.1093/jamia/ocaa067
- Wu LT, Payne EH, Roseman K, Case A, Nelson C, Lindblad R. Using a health information technology survey to explore the availability of addiction treatment data in the electronic health records: A National Drug Abuse Treatment Clinical Trials Network study. J Subst Abuse Treat. 2020;112S:56-62. doi:10.1016/j.jsat.2020.01.015
- Yan BW, Sloan FA, Dudley RA. How Influenza Vaccination Rate Variation Could Inform Pandemic-Era Vaccination Efforts [published online ahead of print, 2020 Aug 28]. J Gen Intern Med. 2020;1-3. doi:10.1007/s11606-020-06129-x
- Yang Q, Hatch D, Crowley MJ, Shaw RJ, et al. Digital Phenotyping Self-Monitoring Behaviors for Individuals With Type 2 Diabetes Mellitus: Observational Study Using Latent Class Growth Analysis. JMIR Mhealth Uhealth. 2020;8(6):e17730. Published 2020 Jun 11. doi:10.2196/17730
- Yi JS, Kim H. Factors Related to Presenteeism among South Korean Workers Exposed to Workplace Psychological Adverse Social Behavior. Int J Environ Res Public Health. 2020;17(10):3472. Published 2020 May 15. doi:10.3390/ijerph17103472
- Zhang W, Kuang Z, Peissig P, Page D. Adverse drug reaction discovery from electronic health records with deep neural networks. Proceedings of the ACM Conference on Health, Inference, and Learning; Toronto, Ontario, Canada: Association for Computing Machinery; 2020. p. 30–9. doi: 10.1145/3368555.3384459
- Alexopoulos, A. S., Jackson, G. L., Edelman, D., Smith, V. A., Berkowitz, T., Woolson, S. L., Bosworth, H. B., & Crowley, M. J. (2019). Clinical factors associated with persistently poor diabetes control in the Veterans Health Administration: A nationwide cohort study. PloS one, 14(3), e0214679. https://doi.org/10.1371/journal.pone.0214679
- Allori AC, Marcus JR. Condition-Specific Standard Sets of Outcome Measures Critical for Clinical and Health Services Research. JAMA Facial Plast Surg. 2019.
- Ahmad, T., Lund, L. H., Rao, P., Ghosh, R., Warier, P., Vaccaro, B., Dahlström, U., O’Connor, C. M., Felker, G. M., & Desai, N. R. (2018). Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients. Journal of the American Heart Association, 7(8), e008081. https://doi.org/10.1161/JAHA.117.008081
- Asch, F. M., Poilvert, N., Abraham, T., Jankowski, M., Cleve, J., Adams, M., Romano, N., Hong, H., Mor-Avi, V., Martin, R. P., & Lang, R. M. (2019). Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert. Circulation. Cardiovascular imaging, 12(9), e009303. https://doi.org/10.1161/CIRCIMAGING.119.009303
- Banerjee I, Sofela M, Yang J, Chen JH, Shah NH, Ball R, Mushlin AI, Desai M, Bledsoe J, Amrhein T, Rubin DL, Zamanian R, Lungren MP. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. JAMA Netw Open. 2019 Aug 2;2(8):e198719. doi: 10.1001/jamanetworkopen.2019.8719. PMID: 31390040; PMCID: PMC6686780.
- Banerjee, I., Ling, Y., Chen, M. C., Hasan, S. A., Langlotz, C. P., Moradzadeh, N., Chapman, B., Amrhein, T., Mong, D., Rubin, D. L., Farri, O., & Lungren, M. P. (2019). Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artificial intelligence in medicine, 97, 79–88. https://doi.org/10.1016/j.artmed.2018.11.004
- Barrett J, Turner B, Silva S, Zychowicz M. Clinical pathways on a mobile device. BMJ Evidence-Based Medicine. 2019:bmjebm-2019-111234.
- Bedoya AD, Clement ME, Phelan M, Steorts RC, O’Brien C, Goldstein BA. Minimal Impact of Implemented Early Warning Score and Best Practice Alert for Patient Deterioration. Crit Care Med. 2019;47(1):49-55.
- Benitez, M., Tian, J., Kelly, M., Selvakumaran, V., Phelan, M., Mazurowski, M., … & Henao, R. (2019, March). Combining deep learning methods and human knowledge to identify abnormalities in computed tomography (CT) reports. In Medical Imaging 2019: Computer-Aided Diagnosis (Vol. 10950, pp. 229-235). SPIE.
- Beskow LM, Brelsford KM, Hammack CM. Patient perspectives on use of electronic health records for research recruitment. BMC Med Res Methodol. 2019;19(1):42.
- Biederman DJ, Modarai F, Gamble J, et al. Identifying Patients Experiencing Homelessness in an Electronic Health Record and Assessing Qualification for Medical Respite: A Five-Year Retrospective Review. J Health Care Poor Underserved. 2019;30(1):297-309.
- Biederman DJ, Gamble J, Wilson S, Douglas C, Feigal J. Health Care Utilization Following a Homeless Medical Respite Pilot Program. Public Health Nurs. 2019;36(3):296-302.
- Blalock DV, Bosworth HB, Reeve BB, Voils CI. Co-occurring reasons for medication nonadherence within subgroups of patients with hyperlipidemia. J Behav Med. 2019;42(2):291-299.
- Blaske A, Amanda M, Oates J, Crofford L, Clowse ME, Barnado A. 51 Births to Women with Systemic Lupus Erythematosus can be Identified Accurately in the Electronic Health Record. Lupus Science & Medicine. 2019;6(Suppl 1):A38-A39.
- Boulware LE, Lyn M. Who Will Drive the Change? Democratizing Health Data. Am J Public Health. 2019;109(4):547-548.
- Cabacungan AN, Diamantidis CJ, St Clair Russell J, Strigo TS, Pounds I, Alkon A, Riley JA, Falkovic M, Pendergast JF, Davenport CA, Ellis MJ, Sudan DL, Hill-Briggs F, Browne T, Ephraim PL, Boulware LE. Development of a Telehealth Intervention to Improve Access to Live Donor Kidney Transplantation. Transplant Proc. 2019;51(3):665-675.
- Campbell WS, Carter AB, Cushman-Vokoun AM, Greiner TC, Dash RC, et al. A Model Information Management Plan for Molecular Pathology Sequence Data Using Standards: From Sequencer to Electronic Health Record. The Journal of molecular diagnostics : JMD. 2019;21(3):408-417.
- Chang, Y., Lafata, K., Sun, W., Wang, C., Chang, Z., Kirkpatrick, J. P., & Yin, F. F. (2019). An investigation of machine learning methods in delta-radiomics feature analysis. PloS one, 14(12), e0226348. https://doi.org/10.1371/journal.pone.0226348
- Chong JL, Low LL, Chan DYL, Shen Y, Thin TN, Ong MEH, Matchar DB. Can We Understand Population Healthcare Needs using Electronic Medical Records? Singapore Med J. 2019.
- Chowdhury, A. S., Lofgren, E. T., Moehring, R. W., & Broschat, S. L. (2020). Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach. Journal of applied microbiology, 128(3), 688–696. https://doi.org/10.1111/jam.14499
- Coravos, A., Goldsack, J. C., Karlin, D. R., Nebeker, C., Perakslis, E., Zimmerman, N., & Erb, M. K. (2019). Digital Medicine: A Primer on Measurement. Digital biomarkers, 3(2), 31–71. https://doi.org/10.1159/000500413
- Cox CE, White DB, Hough CL, et al. Effects of a Personalized Web-Based Decision Aid for Surrogate Decision Makers of Patients With Prolonged Mechanical Ventilation: A Randomized Clinical Trial. Ann Intern Med. 2019.
- Dawson G, Sapiro G. Potential for Digital Behavioral Measurement Tools to Transform The Detection and Diagnosis of Autism Spectrum Disorder. JAMAPediatr.2019;173(4):305-06.
- De Groot AS, Kazi ZB, Martin RF, et al. HLA- and Genotype-Based Risk Assessment Model to Identify Infantile Onset Pompe Disease Patients at High-Risk of Developing Significant Anti-Drug Antibodies (ADA). Clin Immunol. 2019;200:66-70.
- Dodson CH, Baker E, Bost K. Thematic Analysis of Nurse Practitioners use of Clinical Decision Support Tools and Clinical Mobile Apps for Prescriptive Purposes. J Am Assoc Nurse Pract. 2019.
- Doll JA, Jones WS, Lokhnygina Y, Culpepper S, Parks RL, Calhoun C, Au DH, Patel MR. PREPARED Study: A Study of Shared Decision-Making for Coronary Artery Disease. Circulation: Cardiovascular Quality and Outcomes. 2019;12(2):e005244.
- Driver BE, Scharber SK, Fagerstrom ET, Klein LR, Cole JB, Dhaliwal RS. The Effect of a Clinical Decision Support for Pending Laboratory Results at Emergency Department Discharge. The Journal of emergency medicine. 2019;56(1):109-113.
- Elias P, Peterson E, Wachter B, Ward C, Poon E, Navar AM. Evaluating the Impact of Interruptive Alerts within a Health System: Use, Response Time, and Cumulative Time Burden. Appl Clin Inform. 2019 Oct;10(5):909-917. doi: 10.1055/s-0039-1700869. Epub 2019 Nov 27. PMID: 31777057; PMCID: PMC6881214.
- Embi PJ, Richesson R, Tenenbaum J, et al. Reimagining the Research-Practice Relationship: Policy Recommendations for Informatics-Enabled Evidence-Generation across the US Health System. JAMIA Open. 2019;2(1):2-9.
- Fayanju OM, Yenokyan K, Ren Y, Goldstein BA, Stashko I, Power S, Thornton MJ, Marcom PK, Hwang ES. The Effect of Treatment on Patient-Reported Distress after Breast Cancer Diagnosis. Cancer. 2019.
- Garza M, Myneni S, Nordo A, Eisenstein E, Hammond WE, et al. eSource for Standardized Health Information Exchange in Clinical Research: A Systematic Review. Studies in health technology and informatics. 2019;257:115-124.
- Goldstein BA, Phelan M, Pagidipati NJ, Holman RR, Pencina MJ, Stuart EA. An Outcome Model Approach to Transporting a Randomized Controlled Trial Results to a Target Population. J Am Med Inf Assoc. 2019;26(5):429-437.
- Goldstein BA, Rigdon J. Using Machine Learning to Identify Heterogeneous Effects in Randomized Clinical Trials-Moving Beyond the Forest Plot and Into the Forest. JAMA Netw Open. 2019;2(3):e190004.
- Goldstein BA, Phelan M, Pagidipati NJ, Peskoe SB. How and when informative visit processes can bias inference when using electronic health records data for clinical research. J Am Med Inf Assoc. 2019;26(12):1609-17.
- Goldstein KM, Fisher DA, Wu RR, Orlando LA, Coffman CJ, Grubber JM, Rakhra-Burris T, Wang V, Scheuner MT, Sperber N, Datta SK, Nelson RE, Strawbridge E, Provenzale D, Hauser ER, Voils CI. An electronic family health history tool to identify and manage patients at increased risk for colorectal cancer: protocol for a randomized controlled trial. Trials. 2019 Oct 7;20(1):576. doi: 10.1186/s13063-019-3659-y. PMID: 31590688; PMCID: PMC6781340.
- Goldstein, B. A., Carlson, D., & Bhavsar, N. A. (2018). Subject Matter Knowledge in the Age of Big Data and Machine Learning. JAMA network open, 1(4), e181568. https://doi.org/10.1001/jamanetworkopen.2018.1568
- He, Y., Wang, H., Zheng, J., Beiting, D. P., Masci, A. M., Yu, H., Liu, K., Wu, J., Curtis, J. L., Smith, B., Alekseyenko, A. V., & Obeid, J. S. (2019). OHMI: the ontology of host-microbiome interactions. Journal of biomedical semantics, 10(1), 25. https://doi.org/10.1186/s13326-019-0217-1
- Hein AM, Rosdahl JA, Bosworth HB, et al. The Association of an Upper Extremity Functional Survey and Glaucoma Medication Administration Success. Curr Eye Res. 2019:1-7.
- Hornik CP, Atz AM, Bendel C, Chan F, Downes K, Grundmeier R, Fogel B, Gipson, D, Laughon M, Miller M, Smith M, Livington C, Kluchar C, et al. Creation of a Multicenter Pediatric Inpatient Data Repository Derived from Electronic Health Records. Appl Clin Inform. 2019;10(2):307-315.
- Hutyra CA, Streufert B, Politzer CS, et al. Assessing the Effectiveness of Evidence-Based Medicine in Practice: A Case Study of First-Time Anterior Shoulder Dislocations. The Journal of bone and joint surgery American volume. 2019;101(2):e6.
- Im EO, Kim S, Lee C, Chee E, Mao JJ, Chee W. Decreasing Menopausal Symptoms of Asian American Breast Cancer Survivors through a Technology-Based Information and Coaching/Support Program. Menopause (New York, NY). 2019;26(4):373-382.
- Im EO, Kim S, Yang YL, Chee W. The efficacy of a technology-based information and coaching/support program on pain and symptoms in Asian American survivors of breast cancer. Cancer. 2019.
- Jiang C, Faroqi L, Palaniappan L and Dunn J. Estimating Personal Resting Heart Rate from Wearable Biosensor Data. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 2019, pp. 1-4, doi: 10.1109/BHI.2019.8834554.
- Joseph LM, Berry DC, Jessup A, Davison J, Schneider BJ, Twersky JI. Implementing and Feasibility Testing Depression Screening using the Electronic Medical Record for Patients with Type 2 Diabetes admitted to the Hospital. Nurs Open. 2019;6(1):30-38.
- Katsanis SH, Huang E, Young A, et al. Caring for Trafficked and Unidentified Patients in the EHR Shadows: Shining a Light by Sharing the Data. PLoS One. 2019;14(3).
- Kelley T. Emergence of Nursing Innovation Influenced by Advances in Informatics and Health IT. Nurse Leader. 2019;17(6):531-6.
- Kikchi R, Broadwater G, Shelby R, Robertson J, Zullig LL, Maloney B, et al. Detecting geriatric needs in older patients with breast cancer through use of a brief geriatric screening tool. J Geriatr Oncol. 2019;10(6):968-72.
- Kim H, Mentzer J, Taira R. Developing a Physical Activity Ontology to Support the Interoperability of Physical Activity Data. J Med Internet Res. 2019;21(4):e12776.
- Kim J, Kim H, et al. (2019). Patient Perspectives About Decisions to Share Medical Data and Biospecimens for Research. Jama Network Open 2(8): e199550-e199550.
- Kim H, Eltz AJ. Representing Nursing Data With Fast Healthcare Interoperability Resources: Early Lessons Learned With a Use Case Scenario on Home-Based Pressure Ulcer Care. Comput Inform Nurs. 2019.
- Knight LMJ, Onsomu EO, Bosworth HB, et al. Exploring Emergency Department Provider Experiences With and Perceptions of Weight-Based Versus Individualized Vaso-Occlusive Treatment Protocols in Sickle Cell Disease. Adv Emerg Nurs J. 2019;41(1):86-97.
- Kong DH, Ren YH, Hou R, Grimm LJ, Marks JR, Lo JY. Synthesis and Texture Manipulation of Screening Mammograms using Conditional Generative Adversarial Network. Proceedings of SPIE. 2019;10950(n/a):no. 109502M.
- Kuusisto, F., Costa, V. S., Hou, Z., Thomson, J., Page, D., & Stewart, R. (2019). Machine learning to predict developmental neurotoxicity with high-throughput data from 2D bio-engineered tissues. Proceedings of the … International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications, 2019, 293–298. https://doi.org/10.1109/icmla.2019.00055
- Lewinski AA, Drake C, Shaw RJ, Jackson GL, Bosworth, HB, et al. Bridging the Integration Gap between Patient-Generated Blood Glucose Data and Electronic Health Records. J Am Med Inf Assoc. 2019.
- Lewinski AA, Patel UD, Diamantidis CJ, et al. Addressing Diabetes and Poorly Controlled Hypertension: Pragmatic mHealth Self-Management Intervention. J Med Internet Res. 2019;21(4):e12541.
- Lin AL, Sendak M, Bedoya AD, et al. Evaluating sepsis definitions for clinical decision support against a definition for epidemiological disease surveillance. bioRxiv. 2019:648907.
- Lin, J., Sibley, A., Shterev, I., Nixon, A., Innocenti, F., Chan, C., & Owzar, K. (2019). fastJT: An R package for robust and efficient feature selection for machine learning and genome-wide association studies. BMC bioinformatics, 20(1), 333. https://doi.org/10.1186/s12859-019-2869-3
- Liu Q, Woo M, Zou X, Champaneria A, Lau C, Mubbashar MI, Schwarz C, Gagliardi JP, Tenenbaum JD. Symptom-based patient stratification in mental illness using clinical notes. J Biomed Inform. 2019 Oct;98:103274. doi: 10.1016/j.jbi.2019.103274. Epub 2019 Sep 6. PMID: 31499185; PMCID: PMC6783390.
- Loring, Z., Mehrotra, S., & Piccini, J. P. (2019). Machine learning in ‘big data’: handle with care. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology, 21(9), 1284–1285. https://doi.org/10.1093/europace/euz130
- Lowenstern A, Lippmann SJ, Brennan JM, Wang TY, Curtis LH, Feldman T, et al. Use of Medicare Claims to Identify Adverse Clinical Outcomes After Mitral Valve Repair. Circ Cardiovasc Interv. 2019;12(5):e007451.
- Luedke MW, Blalock DV, Goldstein KM, Kosinski AS, Sinha SR, Drake C, Lewis JD, Husain AM, Lewinski AA, Shapiro A, Gierisch JM, Tran TT, Gordon AM, Van Noord MG, Bosworth HB, Williams JW. Self-management of Epilepsy: A Systematic Review. Ann Intern Med. 2019.
- MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Louie G, Kueider-Paisley A, Moseley MA, Thompson JW, St John Williams L, Tenenbaum JD, Blach C, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimer’s & dementia : the journal of the Alzheimer’s Association. 2019;15(1):76-92.
- Mazurowski, M. A., Buda, M., Saha, A., & Bashir, M. R. (2019). Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. Journal of magnetic resonance imaging : JMRI, 49(4), 939–954. https://doi.org/10.1002/jmri.26534
- Ming DY, Jackson GL, Sperling J, et al. Mobile Complex Care Plans to Enhance Parental Engagement for Children With Medical Complexity. Clin Pediatr. 2019;58(1):34-41.
- Navar AM, Peterson ED, Steen DL, et al. Evaluation of Mortality Data From the Social Security Administration Death Master File for Clinical Research. JAMA Cardiol. 2019;4(4):375-379.
- Okeke NL, Webel AR, Bosworth HB, Aifah A, Bloomfield GS, Choi EW, et al. Rationale and design of a nurse-led intervention to extend the HIV treatment cascade for cardiovascular disease prevention trial (EXTRA-CVD). Am Heart J. 2019;216:91-101.
- Olson, A., Viverette, N., Campbell, H., McKethan, A., & Buntin, M. (2019). Value-based Payment Reform in a Managed Care Environment: Innovator States’ Experiences with Episodes of Care. North Carolina medical journal, 80(5), 297–299. https://doi.org/10.18043/ncm.80.5.297
- Perakslis, E., & Coravos, A. (2019). Is health-care data the new blood?. The Lancet. Digital health, 1(1), e8–e9. https://doi.org/10.1016/S2589-7500(19)30001-9
- Perakslis, E., & Califf, R. M. (2019). Employ Cybersecurity Techniques Against the Threat of Medical Misinformation. JAMA, 322(3), 207–208. https://doi.org/10.1001/jama.2019.6857
- Peterson E. D. (2019). Machine Learning, Predictive Analytics, and Clinical Practice: Can the Past Inform the Present?. JAMA, 322(23), 2283–2284. https://doi.org/10.1001/jama.2019.17831
- Pratt NL, Mack CD, Meyer AM, Davis KJ, Hammill BG, Hampp C, Setoguchi S, Raman SR, Chun DS, Stürmer T, Lund JL. Data linkage in pharmacoepidemiology: A call for rigorous evaluation and reporting. Pharmacoepidemiol Drug Saf. 2020 Jan;29(1):9-17. doi: 10.1002/pds.4924. Epub 2019 Nov 17. PMID: 31736248.
- Purswani JM, Dicker AP, Champ CE, Cantor M, Ohri N. Big Data From Small Devices: The Future of Smartphones in Oncology. Semin Radiat Oncol. 2019 Oct;29(4):338-347. doi: 10.1016/j.semradonc.2019.05.008. PMID: 31472736.
- Puskarich MA, Callaway C, Silbergleit R, Pines JM, Obermeyer Z, Wright DW, Hsia RY, Shah MN, Monte AA, Limkakeng AT Jr, et al. Priorities to Overcome Barriers Impacting Data Science Application in Emergency Care Research. Acad Emerg Med. 2019;26(1):97-105.
- Razzano D, Hall A, Gardner JM, Jiang XS. Pathology Engagement in Global Health: Exploring Opportunities to Get Involved. Arch Pathol Lab Med. 2019;143(4):418-421.
- Reynolds S, Granger BB. Using Health System Data for Improvement Science: Charting Progress. AACN Adv Crit Care.30(1):72-78.
- Rivera-Chaparro ND, Ericson J, Wu H, et al. Safety, Effectiveness and Exposure-Response of Micafungin in Infants: Application of an Established Pharmacokinetics Model to Electronic Health Records. The Pediatric Infectious Disease Journal. 2019;38(2):e26-e28.
- Routh JC, Wolf S, Tejwani R, Jiang R, Pomann GM, Goldstein BA, Maciejewski ML, Allori AC. Early Impact of the Patient Protection and Affordable Care Act on Delivery of Children’s Surgical Care. Clin Pediatr (Phila). 2019;58(4):453-460.
- Schettini P, Shah KP, O’Leary CP, et al. Keeping care connected: e-Consultation program improves access to nephrology care. J Telemed Telecare. 2019;25(3):142-150.
- Scott PJ, Brown AW, Adedeji T, Wyatt JC, Georgiou A, Eisenstein EL, et al. A Review of Measurement Practice in Studies of Clinical Decision Support Systems 1998-2017. Journal of the American Medical Informatics Association : JAMIA. 2019.
- Shaw R, Levine E, Streicher M, et al. Log2Lose: Development and Lessons Learned From a Mobile Technology Weight Loss Intervention. JMIR mHealth uHealth. 2019;7(2):e11972.
- Shelby RA, Dorfman CS, Bosworth HB, et al. Testing a Behavioral Intervention to Improve Adherence to Adjuvant Endocrine Therapy (AET). Contemp Clin Trials. 2019;76:120-131.
- Sheppard VB, He J, Sutton A, Cromwell L, Adunlin G, Salgado TM, Tolsma D, Trout M, Robinson BE, Edmonds MC, Bosworth HB, et al. Adherence to Adjuvant Endocrine Therapy in Insured Black and White Breast Cancer Survivors: Exploring Adherence Measures in Patient Data. J Manag Care Spec Pharm. 2019;25(5):578-586.
- Simon GE, Richesson R, Weinfurt K, Hernandez AF, Curtis LH. Statistical Code for Clinical Research Papers. Ann Intern Med. 2019;170(1):80.
- Smith SB, Parisien M, Bair E, et al. Genome-Wide Association Reveals Contribution of MRAS to Painful Temporomandibular Disorder in Males. Pain. 20Tenenbaum JD, Bhuvaneshwar K, Gagliardi JP, et al. Translational bioinformatics in mental health: open access data sources and computational biomarker discovery. Brief Bioinform. 2019;20(3):842-856.19;160(3):579-591.
- Sutton, L., Berdan, L. G., Bolte, J., Califf, R. M., Ginsburg, G. S., Li, J. S., McCall, J., Moen, R., Myers, B. S., Rodriquez, V., Veldman, T., & Boulware, L. E. (2019). Facilitating translational team science: The project leader model. Journal of clinical and translational science, 3(4), 140–146. https://doi.org/10.1017/cts.2019.398
- Starks MA, Sanders GD, Coeytaux RR, Riley IL, Jackson LR 2nd, Brooks AM, Thomas KL, Choudhury KR, Califf RM, Hernandez AF. Assessing heterogeneity of treatment effect analyses in health-related cluster randomized trials: A systematic review. PLoS One. 2019 Aug 12;14(8):e0219894. doi: 10.1371/journal.pone.0219894. PMID: 31404063; PMCID: PMC6690528.
- St John-Williams L, Mahmoudiandehkordi S, Arnold M, Massaro T, Blach C, Kastenmuller G, Louie G, Kueider-Paisley A, Moseley MA, Tenenbaum JTD, et al. Bile acids targeted metabolomics and medication classification data in the ADNI1 and ADNIGO/2 cohorts. Sci Data. 2019;6.
- Stubberud AB, Moon RE, Morgan BT, Goode VM. Using the Electronic Medical Record to Improve Preoperative Identification of Patients at Risk for Obstructive Sleep Apnea. Journal of perianesthesia nursing : official journal of the American Society of PeriAnesthesia Nurses. 2019;34(1):51-59.
- Tenenbaum JD, Bhuvaneshwar K, Gagliardi JP, et al. Translational bioinformatics in mental health: open access data sources and computational biomarker discovery. Brief Bioinform. 2019;20(3):842-856.
- Timmons JA, Gallagher IJ, Sood S, Phillips B, Crossland H, Howard R, Kraus WE, Atherton PJ. A statistical and biological response to an informatics appraisal of healthy aging gene signatures. Genome Biol. 2019 Aug 2;20(1):152. doi: 10.1186/s13059-019-1734-z. PMID: 31375147; PMCID: PMC6676519.
- Turakhia MP, Desai M, Hedlin H, Rajmane A, Talati N, Ferris T, Desai S, Nag D, Patel M, Kowey P, Rumsfeld JS, Russo AM, Hills MT, Granger CB, et al. Rationale and Design of a Large-Scale, App-Based Study to Identify Cardiac Arrhythmias using a Smartwatch: The Apple Heart Study. Am Heart J. 2019;207:66-75.
- Vaughn J, Summers-Goeckerman E, Shaw RJ, Shah N. A Protocol to Assess Feasibility, Acceptability, and Usability of Mobile Technology for Symptom Management in Pediatric Transplant Patients. Nurs Res. 9000;Publish Ahead of Print.
- Waller RG, Wright MC, Segall N, et al. Novel Displays of Patient Information in Critical Care Settings: A Systematic Review. J Am Med Inf Assoc. 2019;26(5):479-489.
- Wang C, Zhu X, Hong JC, Zheng D. Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future. Technol Cancer Res Treat. 2019 Jan 1;18:1533033819873922. doi: 10.1177/1533033819873922. PMID: 31495281; PMCID: PMC6732844.
- Weinfurt KP, Lin L, Sugarman J. Public views regarding the responsibility of patients, clinicians, and institutions to participate in research in the United States. Clin Trials
- Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F., Jung, K., Heller, K., Kale, D., Saeed, M., Ossorio, P. N., Thadaney-Israni, S., & Goldenberg, A. (2019). Do no harm: a roadmap for responsible machine learning for health care. Nature medicine, 25(10), 1627. https://doi.org/10.1038/s41591-019-0609-x
- Wu RR, Myers RA, Sperber N, et al. Implementation, Adoption, and Utility of Family Health History Risk Assessment in Diverse Care Settings: Evaluating Implementation Processes and Impact with an Implementation Framework. Genet Med. 2019;21(2):331-338.
- Wu RR, Myers RA, Buchanan AH, et al. Effect of Sociodemographic Factors on Uptake of a Patient-Facing Information Technology Family Health History Risk Assessment Platform. Appl Clin Inform. 2019;10(2):180-188.
- Zheng D, Hong JC, Wang C, Zhu X. Radiotherapy Treatment Planning in the Age of AI: Are We Ready Yet? Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819894577. doi: 10.1177/1533033819894577. PMID: 31858890; PMCID: PMC6927195.
- Zozus MN, Penning M, Hammond WE. Factors impacting physician use of information charted by others. JAMIA Open. 2019 Apr;2(1):107-114. doi: 10.1093/jamiaopen/ooy041. Epub 2018 Dec 28. PMID: 30976757; PMCID: PMC6447025.
- Zullig LL, Kimmick G, Smith V, et al. Using a Geriatric Oncology Assessment to Link with Services (GOAL). J Geriatr Oncol. 2019;10(1):164-168.
- Zullig LL, Ramos K, Berkowitz C, et al. Assessing Key Stakeholders’ Knowledge, Needs, and Preferences for Head and Neck Cancer Survivorship Care Plans. J Cancer Educ. 2019;34(3):584–591. doi:10.1007/s13187-018-1345-5.
- Zullig LL, Jazowski SA, Davenport CA, et al. Primary Care Providers’ Acceptance of Pharmacists’ Recommendations to Support Optimal Medication Management for Patients with Diabetic Kidney Disease [published online ahead of print, 2019 Oct 28]. J Gen Intern Med. 2019;10.1007/s11606-019-05403-x. doi:10.1007/s11606-019-05403-x
Upcoming
- Adam, G. P., Springs, S., Trikalinos, T., Williams, J. W., Jr, Eaton, J. L., Von Isenburg, M., Gierisch, J. M., Wilson, L. M., Robinson, K. A., Viswanathan, M., Middleton, J. C., Forman-Hoffman, V. L., Berliner, E., & Kaplan, R. M. (2018). Does information from ClinicalTrials.gov increase transparency and reduce bias? Results from a five-report case series. Systematic reviews, 7(1), 59. https://doi.org/10.1186/s13643-018-0726-5
- Anderson LM, Leonard S, Jonassaint J, Lunyera J, Bonner M, Shah N. Mobile health intervention for youth with sickle cell disease: Impact on adherence, disease knowledge, and quality of life. Pediatr Blood Cancer. 2018;65(8).
- Aronson S, Westover J, Guinn N, Setji T, Wischmeyer P, Gulur P, Hopkins T, Seyler TM, Lagoo-Deendayalan S, Heflin MT, Thompson A, Swaminathan M, Flanagan E. A Perioperative Medicine Model for Population Health: An Integrated Approach for an Evolving Clinical Science. Anesth Analg. 2018;126(2):682-690.
- Azar KMJ, Bennett GG, Nolting LA, Rosas LG, Burke LE, Ma J. A framework for examining the function of digital health technologies for weight management. Transl Behav Med. 2018;8(2):280-294.
- Badawy SM, Cronin RM, Hankins J, Crosby L, DeBaun M, Thompson AA, Shah N. Patient-Centered eHealth Interventions for Children, Adolescents, and Adults With Sickle Cell Disease: Systematic Review. J Med Internet Res. 2018;20(7):e10940.
- Barton AB, Okorodudu DE, Bosworth HB, Crowley MJ. Clinical Inertia in a Randomized Trial of Telemedicine-Based Chronic Disease Management: Lessons Learned. Telemed e-Health. 2018.
- Barupal DK, Fan S, Wancewicz B, Cajka T, Sa M, Showalter MR, Baille R, Tenenbaum JD, Louie G, Kaddurah-Daouk R, et al. Generation and quality control of lipidomics data for the alzheimer’s disease neuroimaging initiative cohort. Sci Data. 2018;5:180263.
- Bedoya AD, Clement ME, Phelan M, Steorts RC, O’Brien C, Goldstein BA. Minimal Impact of Implemented Early Warning Score and Best Practice Alert for Patient Deterioration. Crit Care Med. 2018.
- Bennett GG, Steinberg D, Askew S, Levine E, Foley P, Batch BC, Svetkey LP, et al. Effectiveness of an App and Provider Counseling for Obesity Treatment in Primary Care. Am J PrevMed.2018;55(6):777-786.
- Bhavsar NA, Gao AJ, Phelan M, Pagidipati NJ, Goldstein BA. Value of Neighborhood Socioeconomic Status in Predicting Risk of Outcomes in Studies That Use Electronic Health Record Data. JAMA Netw Open. 2018;1(5).
- Bosworth HB, Olsen MK, McCant F, Stechuachak KM, Danus S, Crowley MJ, Goldstein KM, Zullig LL, Oddone EZ. Telemedicine cardiovascular risk reduction in veterans: The CITIES trial. Am Heart J. 2018;199:122-129.
- Califf RM. Mass Customization, Ubiquitous Information, and Improvements to Health Outcomes in the United States. JAMA Cardiol. 2018;3(5):365-366.
- Cameron B, Douthit B, Richesson R. Data and knowledge standards for learning health: A population management example using chronic kidney disease. Learning Health Systems. 2018;2(4):e10064.
- Carin L, Pencina MJ. On deep learning for medical image analysis. JAMA. 2018;320(11):1192-1193.
- Cavazos TN, Richesson RL, Hall AG, Dukes AL. Improving the Documentation Process for Referrals into Diabetes Education: A Quality Improvement Project. J Community Health Nurs. 2018;35(2):65-72.
- Chanfreau-Coffinier C, Peredo J, Russell MM, Yano EM, Hamilton AB, Lerner B, Provenzale D, Knight SJ, Voils CI, Scheuner MT. A logic model for precision medicine implementation informed by stakeholder views and implementation science. Genet Med. 2019 May;21(5):1139-1154. doi: 10.1038/s41436-018-0315-y. Epub 2018 Oct 23. PMID: 30353149.
- Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB, Langlotz CP, Amrhein TJ, et al. Deep Learning to Classify Radiology Free-Text Reports. Radiology. 2018;286(3):845-852.
- Chen X, Gururaj AE, Ozyurt B, Liu R, Soysal E, Cohen T, Tiryaki F, Li Y, Zong N, Jiang M, Rogith D, Salimi M, Kim HE, et al. DataMed – an open source discovery index for finding biomedical datasets. Journal of the American Medical Informatics Association : JAMIA. 2018.
- Cobb AN, Benjamin AJ, Huang ES, Kuo PC. Big data: More than big data sets. Surgery. 2018;164(4):640-642.
- Corey KM, Kashyap S, Lorenzi E, et al. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study. PLoS Med. 2018;15(11):e1002701. Published 2018 Nov 27. doi:10.1371/journal.pmed.1002701.
- Cox CE, Jones DM, Reagan W, Key MD, Chow V, McFarlin J, Casarett D, Creutzfeldt CJ, Docherty SL. . Palliative Care Planner: A Pilot Study to Evaluate Acceptability and Usability of an Electronic Health Records System-integrated, Needs-targeted App Platform. Ann Am Thoracic Society. 2018;15(1):59-68.
- Crowson MG, Schulz K, Ulvila A, Witsell DL. Payer database and geospatial analysis to evaluate practice patterns in treating allergy in North Carolina. Am J Otolaryngol. 2018;39(1):20-24.
- Davis AA, McKee AE, Kibbe WA, Villaflor VM. Complexity of Delivering Precision Medicine: Opportunities and Challenges. American Society of Clinical Oncology educational book American Society of Clinical Oncology Annual Meeting. 2018(38):998-1007.
- Ding X, Gellad ZF, Mather C, 3rd, Barth P, Poon EG, Newman M, Goldstein BA. Designing risk prediction models for ambulatory no-shows across different specialties and clinics. Journal of the American Medical Informatics Association : JAMIA. 2018.
- Doll KM, Rademaker A, Sosa JA. Practical Guide to Surgical Data Sets: Surveillance, Epidemiology, and End Results (SEER) Database. JAMA Surg. 2018.
- Douthit BJ, Richesson RL. Emergency Department Clinician Perspectives on the Data Availability to Implement Clinical Decision Support Tools for Five Clinical Practice Guidelines. AMIA Joint Summits on Translational Science proceedings AMIA Joint Summits on Translational Science. 2018;2017:340-348.
- Drozda JP, Roach J, Forsyth T, Helmering P, Dummitt B, Tcheng JE. Constructing the informatics and information technology foundations of a medical device evaluation system: a report from the FDA unique device identifier demonstration. J Am Med Inf Assoc. 2018;25(2):111-120.
- Dupre ME, Xu HZ, Granger BB, Lynch SM, Nelson A, Churchill E, Willis JM, Curtis LH, Peterson ED. Access to routine care and risks for 30-day readmission in patients with cardiovascular disease. Am Heart J. 2018;196(n/a):9-17.
- El Naqa I, Ruan D, Valdes G, Wu QJ, et al. Machine learning and modeling: Data, validation, communication challenges. Med Phys. 2018;45(10):E834-E840.
- Goldstein KM, Zullig LL, Dedert EA, et al. Telehealth Interventions Designed for Women: an Evidence Map. J Gen Intern Med. 2018;33(12):2191-2200.
- Gonzalez-Beltran AN, Campbell J, Dunn P, Guijarro D, Ionescu S, Kim H, et al. Data discovery with DATS: exemplar adoptions and lessons learned. Journal of the American Medical Informatics Association : JAMIA. 2018;25(1):13-16.
- Gupta A, Allen LA, Bhatt DL, Cox M, DeVore AD, Heidenreich PA, Hernandez AF, Peterson ED, Matsouaka RA et al. Association of the Hospital Readmissions Reduction Program Implementation With Readmission and Mortality Outcomes in Heart Failure. JAMA Cardiol. 2018;3(1):44-53.
- Hammond WE. How do You Know when You have Interoperability? European Journal for Biomedical Informatics. 2018; 24(3):13-20.
- Hirschey R, Kimmick G, Hockenberry M, Shaw R, Pan W, Lipkus I. Protocol for Moving On: a randomized controlled trial to increase outcome expectations and exercise among breast cancer survivors. Nurs Open. 2018;5(1):101-108.
- Hirschey R, Kimmick G, Page C, Hockenberry M, Shaw R, Pan W, Lipkus I. Feasibility of a theory-based intervention to increase exercise among breast cancer survivors. Wiley. 2018:27(1):98-98.
- Hirschey R, Kimmick G, Page C, Hockenberry M, Shaw R, Pan W, Page C, Lipkus I. Preliminary test of targeting outcome expectations to increase exercise among breast cancer survivors. Oxford Univ Press Inc. 2018;52(1):S597-S597.
- Hirschey R, Kimmick G, Hockenberry M, Shaw R, Pan W, Page C, Lipkus I. A randomized phase II trial of MOVING ON: An intervention to increase exercise outcome expectations among breast cancer survivors. Psycho-Oncol. 2018;27(10):2450-2457.
- Hong JC, Niedzwiecki D, Palta M, Tenenbaum JD. Predicting Emergency Visits and Hospital Admissions During Radiation and Chemoradiation: An Internally Validated Pretreatment Machine Learning Algorithm. JCO Clinical Cancer Informatics. 2018(2):1-11.
- Hull LE, Lynch JA, Berse BB, Kelley MJ, et al. Clinical Impact of 21-Gene Recurrence Score Test Within the Veterans Health Administration: Utilization and Receipt of Guideline-Concordant Care. Clin Breast Cancer. 2018;18(2):135-143.
- Jonassaint CR, Rao N, Sciuto A, Switzer GE, De Castro L, Kato GJ, Jonassaint JC, Hammal Z, Shah N, Wasan A. Abstract Animations for the Communication and Assessment of Pain in Adults: Cross-Sectional Feasibility Study. J Med Internet Res. 2018;20(8):e10056.
- Jones WS, Krucoff MW, Morales P, Wilgus RW, Heath AH, Williams MF, Tcheng JE, et al. Registry Assessment of Peripheral Interventional Devices (RAPID): Registry assessment of peripheral interventional devices core data elements. J Vasc Surg. 2018;67(2):637-+.
- Jones RB, Martinez C, Majhail NS, Prestegaard M, Maiers M, Horwitz M, et al. Stem Cell Transplantation and Informatics: Current Considerations. Biol Blood Marrow Transplant. 2018;24(4):659-665.
- Kaji AH, Rademaker AW, Hyslop T. Tips for Analyzing Large Data Sets From the JAMA Surgery Statistical Editors. JAMA Surg. 2018;153(6):508-509.
- Kirby AM, Kruger B, Jain R, O’Hair DP, Granger BB. Using Clinical Decision Support to Improve Referral Rates in Severe Symptomatic Aortic Stenosis: A Quality Improvement Initiative. Computers, informatics, nursing : CIN. 2018;36(11):525-529.
- Kolls BJ, Mace BE, Dombrowski KE. Implementation of Continuous Video-Electroencephalography at a Community Hospital Enhances Care and Reduces Costs. Neurocrit Care. 2018;28(2):229-238.
- Lai EC, Ryan P, Zhang Y, Schuemie M, Hardy NC, Kamijima Y, Kimura S, Kubota K, Man KK, Cho SY, Park RW, Stang P, Su CC, Wong IC, Kao YY, Setoguchi S. Applying a common data model to Asian databases for multinational pharmacoepidemiologic studies: opportunities and challenges. Clin Epidemiol. 2018;10:875-885.
- Lee JS, Kibbe WA, Grossman RL. Data Harmonization for a Molecularly Driven Health System. Cell. 2018;174(5):1045-1048.
- Levitan B, Getz K, Eisenstein EL, Goldberg M, Harker M, et al. Assessing the Financial Value of Patient Engagement: A Quantitative Approach from CTTI’s Patient Groups and Clinical Trials Project. Ther Innov Regul Sci. 2018;52(2):220-229.
- Lin Y, Li Z, Liu C, Wang Y. Towards precision medicine in ischemic stroke and transient ischemic attack. Frontiers in bioscience (Landmark edition). 2018;23:1338-1359.
- Lister M, Vaughn J, Brennan-Cook J, Molloy M, Kuszajewski M, Shaw RJ. Telehealth and telenursing using simulation for pre-licensure USA students. Nurse Educ Pract. 2018;29:59-63.
- Ni Z, Liu C, Wu B, Yang Q, Douglas C, Shaw RJ. An mHealth intervention to improve medication adherence among patients with coronary heart disease in China: Development of an intervention. International Journal of Nursing Sciences. 2018.
- Onaitis MW, Furnary AP, Kosinski AS, Kim S, et al. Prediction of Long-Term Survival After Lung Cancer Surgery for Elderly Patients in The Society of Thoracic Surgeons General Thoracic Surgery Database. The Annals of thoracic surgery. 2018;105(1):309-316.
- Page GG, Corwin EJ, Dorsey SG, Redeker NS, McCloskey DJ, Austin JK, Guthrie BJ, Moore SM, Barton D, Kim MT, Docherty SL, Waldrop-Valverde D, Bailey DE Jr, et al. Biomarkers as Common Data Elements for Symptom and Self-Management Science. Journal of nursing scholarship : an official publication of Sigma Theta Tau International Honor Society of Nursing. 2018;50(3):276-286.
- Patel MP, Schettini P, O’Leary CP, Bosworth HB, Anderson JB, Shah KP. Closing the Referral Loop: an Analysis of Primary Care Referrals to Specialists in a Large Health System. J Gen Intern Med. 2018;33(5):715-721.
- Paul DW, Neely NB, Clement M, Riley I, Al-Hegelan M, Phelan M, Kraft M, Murdoch DM, Lucas J, Bartlett J, McKellar M, Que LG. Development and validation of an electronic medical record (EMR)-based computed phenotype of HIV-1 infection. J Am Med Inform Assoc. 2018 Feb 1;25(2):150-157. doi: 10.1093/jamia/ocx061. PMID: 28645207; PMCID: PMC6381767.
- Pavon JM, Sloane RJ, Pieper CF, et al. Automated versus Manual Data Extraction of the Padua Prediction Score for Venous Thromboembolism Risk in Hospitalized Older Adults. Appl Clin Inform. 2018;9(3):743-751.
- Payne PRO, Shah NH, Tenenbaum JD, Mangravite L. Democratizing Health Data for Translational Research. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing. 2018;23:240-246.2018;25(2):150-157.
- Peterson ED, Rockhold FW. Finding Means to Fulfill the Societal and Academic Imperative for Open Data Access and Sharing. JAMA Cardiol. 2018;3(9):793-794.
- Raman SR, Hammill BG, Queen RM, Adams SB, Curtis LH. Linking a Total Ankle Arthroplasty Registry to Medicare Inpatient Claims without Unique Identifiers. J Bone Joint Surg-Am Vol. 2018;100(12):1016-1022.
- Raman SR, Curtis LH, Temple R, Peterson ED, Hernandez AF, et al. Leveraging electronic health records for clinical research. Am Heart J. 2018;202:13-19.
- Reese T, Segall N, Nesbitt P, et al. Patient information organization in the intensive care setting: expert knowledge elicitation with card sorting methods. Journal of the American Medical Informatics Association : JAMIA. 2018;25(8):1026-1035.
- Rhon DI, Clewley D, Young JL, Sissel CD, Cook CE. Leveraging healthcare utilization to explore outcomes from musculoskeletal disorders: methodology for defining relevant variables from a health services data repository. BMC Med Inform Decis Mak. 2018;18(1):10.
- Richman B. Health Regulation for the Digital Age – Correcting the Mismatch. The New England journal of medicine. 2018;379(18):1694-1695.
- Rubin JC, Silverstein JC, Friedman CP, Rockhold FW, et al. Transforming the future of health together: The Learning Health Systems Consensus Action Plan. Learn Health Syst. 2018;2(3):no. e10055.
- Schoen MW, Basch E, Hudson LL, Chung AE, Mendoza TR, Mitchell SA, St Germain D, Baumgartner P, Sit L, Rogak LJ, Shouery M, Shalley E, Reeve BB, Fawzy MR, Bhavsar NA, Cleeland C, Schrag D, Dueck AC, Abernethy AP. Software for Administering the National Cancer Institute’s Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events: Usability Study. JMIR human factors. 2018;5(3):e10070.
- Sharma A, Harrington RA, McClellan MB, Turakhia MP, Eapen ZJ, et al. Using Digital Health Technology to Better Generate Evidence and Deliver Evidence-Based Care. J Am Coll Cardiol. 2018;71(23):2680-2690.
- Simon CM, Schartz HA, Rosenthal GE, Eisenstein EL, Klein DW. Perspectives on Electronic Informed Consent From Patients Underrepresented in Research in the United States: A Focus Group Study. J Empir Res Hum Res Ethics. 2018;13(4):338-348.
- Sun W, Jiang M, Dang J, Chang P, Yin FF. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis. Radiation oncology (London, England). 2018;13(1):197.
- Tenenbaum JD, Blach C. Best practices and lessons learned from reuse of 4 patient-derived metabolomics datasets in Alzheimer’s disease. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing. 2018;23:280-291.
- Unertl KM, Fair AM, Favours JS, Dolor RJ, Smoot D, Wilkins CH. Clinicians’ perspectives on and interest in participating in a clinical data research network across the Southeastern United States. BMC Health Serv Res. 2018;18(1):568.
- Vaughn J, Jonassaint J, Summers-Goeckerman E, Shaw RJ, Shah N. Customization of the TRU-PBMT App (Technology Recordings to better Understand Pediatric Blood and Marrow Transplant). Journal of pediatric nursing. 2018;42:86-91.
- Vinet E, Chakravarty EF, Simard JF, Clowse M. Use of Administrative Databases to Assess Reproductive Health Issues in Rheumatic Diseases. Rheumatic diseases clinics of North America. 2018;44(2):327-336.
- Voils CI, Levine E, Gierisch JM, Pendergast J, Hale SL, McVay MA, Reed SD, Yancy WS, Bennett G, Strawbridge EM, White AC, Shaw RJ. Study protocol for Log2Lose: A feasibility randomized controlled trial to evaluate financial incentives for dietary self-monitoring and interim weight loss in adults with obesity. Contemp Clin Trials. 2018;65:116-122.
- Voils CI, Hale SL, Pendergast J, Gierisch JM, McVay MA, Strawbridge EM, Levine E, White AC, Yancy WS, Reed SD, Bennett G, Shaw RJ. Incentivising behavior change skills to promote weight loss. Oxford Univ Press Inc. 2018;52(1):S408-S408.
- Wang M, Ji Z, Kim HE, Wang S, Xiong L, Jiang X. Selecting Optimal Subset to release under Differentially Private M-estimators from Hybrid Datasets. IEEE Trans Knowl Data Eng. 2018;30(3):573-584.
- Westra BL, Johnson SG, Ali S, Bavuso KM, Cruz CA, Collins S, Furukawa M, Hook ML, LaFlamme A, Lytle K, et al. Validation and Refinement of a Pain Information Model from EHR Flowsheet Data. Appl Clin Inform. 2018;9(1):185-198.
- Xiao R, King J, Villaroman A, Do DH, Boyle NG, Hu X. Predict In-Hospital Code Blue Events using Monitor Alarms through Deep Learning Approach. In2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018 Jul 18 (pp. 3717-3720). IEEE.
- Zebrowski AM, Ellis DE, Barg FK, Sperber NR, Bernhardt BA, Denny JC, Dexter PR, Ginsburg GS, Horowitz CR, Johnson JA, Levy MA, Orlando LA, Pollin TI, Skaar TC, Kimmel SE. Qualitative study of system-level factors related to genomic implementation. Genet Med. 2019 Jul;21(7):1534-1540. doi: 10.1038/s41436-018-0378-9. Epub 2018 Nov 23. PMID: 30467402; PMCID: PMC6533158.
- Zullig LL, Curtis LH. A population health perspective on a claims and electronic health record-based tool to screen for suboptimal medication adherence. Am Heart J. 2018;197(n/a):150-152.
- Zullig LL, McCant F, Silberberg M, Johnson F, Granger BB, Bosworth HB. Changing CHANGE: adaptations of an evidence-based telehealth cardiovascular disease risk reduction intervention. Transl Behav Med. 2018;8(2):225-232