Goodbye Electronic Health Record?

EFMI STC 2022 Conference

Cardiff, Wales
September 8, 2022
THE COMPUTER-BASED PATIENT RECORD

Published by the Institute of Medicine – now the National Academies of Medicine

1991

1997
Requirements for Computer-based Patient Record

• Support patient care and improve quality
• Enhance productivity of health practitioners
• Reduce administrative costs
• Support clinical and health services research
• Accommodate future developments in health care technology, policy, management, and finance
• Insure patient data confidentiality

Today’s EHR has not met these expectations!

Source: Johnson, KB and Stead, WW. Viewpoint AMA. July 14, 2022
Different Users Have Different Requirements

- Primary care – manage different aspects of the case
- Specialists – focus on specific diseases
- Chief resident – focus on teaching during rounds
- Pharmacy’s view – focus on medications
- Dietitian view – support diet and nutrition
- Security department – identifies security risks
- Accounting department – focus on what should be charged
- Research view – access to data without violating patient privacy
- Policy makers – reporting views to prepare reports relating to privacy
EHR Was Doomed From The Start

• Systems were designed by computer engineers with little input from the medical community.
• Systems designed exclusively for inpatient systems.
• Systems were very expensive and only large hospitals could afford them.
• Systems focused on service functions not using data for improving patient care.
• Laboratory systems were developed separately with separate databases.
• Financial systems were developed separately with their own databases.
• Patient management systems largely duplicated the patient chart.
• Architectural framework has remained unchanged. Systems have evolved from the beginning, not restarted.
Proposal for change

• Replace the current EHR model
• Adopt a single common set of data elements
 • Single data element for each concept with a unique definition
 • Rich set of attributes for each data element
 • Attributes include computable knowledge for data elements
 • Build structures based on atomic data elements
• Functional and cognizant-based application program interfaces (API)
Different approaches to data storage

• All data about a patient is stored in a single data cell.
 • Clinical, genomic, behavior, social, economic, environment, family history
 • May contain multiple databases, but data is managed by knowing precisely where data is located.
 • Instantly knowing if data element exists.

• Data is stored as data – not as a function of use.
• All functionality for using the data is external to the data cell.
• Interaction with the data is through Representational State Transfer (REST) – Create, Read, Update, Delete
Making data work

• There are so many common data models, they are uncommon.

• Mapping between common data models is wasted energy. Mapping always results in a loss of information.

• Data sharing and data aggregation are becoming mandatory in health care.

• Goal is a single, common set of data elements with a rich set of attributes used nationally and, perhaps, internationally.

• Attributes provide an opportunity to add computable knowledge and controls to data. Examples include ontology, linkages, decision support links, quality assurance, risk factors, phenotypes, and management data.
Doing the impossible

• HL7/FHIR and OHDSI/OMOP have entered an agreement to create a common set of data elements and a common data model.
• PCORI has now joined the group working on a common set of data elements.
• ONC is supportive of the idea, and we are looking to integrate USCDI.
• Other groups we plan to recruit include CDISC, NLM VSEC, CMS, CDC, FDA, CMS, LOINC, SNOMED, CodeX, i2b2/ACT, caDSR, others
• We are proposing using the Clinical Societies as the doorway to creating data elements and being the stewards of data elements.
Data elements value enhanced

• Create structured sets of data elements into larger groupings
 • Simple cases such as blood pressure, heart murmurs, BMI
 • More complex sets such as an echocardiogram, cardiopulmonary exercise testing
 • Structures to capture complex phenomena yet are easy to work with
 • Functional sets such as well baby work-up, pediatric growth, kidney function, maternal health
 • Phenotypes – diagnostic, treatment, monitoring
 • Tracking Covid patients (and others) across time and space
 • Registries
 • Computable knowledge built into the data element
 • Any defined purpose for a standardized grouping of data elements
Use of data

• Use functionality is performed independently by functional apps.
 • Permits keeping up with new technology and new requirements
 • Allows specialization of data presentation and use
 • Enables competitive market

• Supports query-based interactions: pull over push

• Permits cognitive use of the data through Application Program Interfaces (API)

• HL7 International ® SMART on FHIR ® provides a standard for developing these APIs.
SMART®

• Enables vendors to create apps that seamlessly and securely run across healthcare systems

• Defines a health data layer that builds on FHIR and resource definitions

• Applies set of profiles used to express meds, problems, labs and other clinical data

• Patients, clinicians, others can draw on library of apps to improve clinical care, research, and public health
Pediatric growth chart – innovative parent’s view

- Custom view optimized for communication with parents and child
- Visually project height in terms of parent’s height
- Print copy for parents, or email via portal

Kimberly Revis is obese at 44.9 kg (99 lb).
Compared to her last weight assessment, she is more obese.
The healthy weight for her age BMI height is 22.8 kg ~ 33.3 kg (50 lb ~ 73 lb).
Examples of Cognitive APIs

• Functional and productive problem list
 • Problem list can drive activities and clinical behavior

• Support or do documentation

• Link different types of data in innovative ways

• Use phenotypes to drive effective use of knowledge along with patient data to reduce uncertainty and aid decision-making

• Change passive data storage to innovative partnerships in patient care
What does this mean to the health system?

• Access to more data of higher quality and consistency establishing trust.
• Receiving data from clinical trials directly and automated.
• Increasing use of AI with decisions and contact directly involving patients new regulations and responsibilities.
• New tools to more quickly make decisions?
• Constant vigilance to make sure regulations enhance and not limit of delay advances in health and health care.
• You are the experts. What do you think?
DISCUSSION

This work is supported in part by the Duke Clinical and Translational Science Award, NIH Award UL1TR002553.