Eye-Tracking Technology and Gaze Behavior During Dynamic Mobility Tasks in Neurological Populations

Corinne Woodbine SPT, Brittany Catcher SPT, Caleb Mere MS SPT, MaryEllen Targonski SPT, Sarah Peters SPT, Samantha Kaplan PhD MLIS, Jody A. Feld PT DPT PhD

Background
- Gaze behavior is altered secondary to neurological conditions
- Eye tracking technology (ETT) can monitor visual scanning behavior in static and dynamic environments
- No Prior systematic review on the use of ETT in neurological populations during mobility tasks

Purpose
- Determine how ETT has been used to assess and monitor gaze behavior during mobility tasks in neurological populations
- Examine findings within and between neurological populations
- Provide recommendations for clinical use and future research

Methods
- **Databases:** PubMed, Embase, and Web of Science databases were systematically searched
- **Inclusion Criteria:** Use of ETT during mobility tasks, neurological populations, Adults ≥ 18 years of age
- **Outcomes:** Visual scanning measures including saccades, visual fixations, and directional eye movement
- **Process:** 2 independent reviewers assessed abstract/full text for inclusion, performed data extraction, and assessed risk of bias

Search Results
- 8,030 articles identified, 16 included
- 11 in persons with Parkinson’s disease (PD)
- All conducted in laboratory setting
- 337 total participants, 88% with PD
- Other diagnoses: progressive supranuclear palsy, spinal cord injury, cerebellar degeneration, Alzheimer’s disease, and posterior cortical atrophy
- Walking, obstacle avoidance, dual-tasking, turning, stair negotiation, use of an elevator
- Visual fixations and saccades
- Eye-movement trajectory
- Intersegment timing of eye and body movements
- Methodological quality: 5 poor, 8 fair and 3 good/excellent

Disease Specific Results

Parkinson’s Disease:

Gaze Behavior:
- No dissociation of eye, head, trunk motions during turns
- Decreased anticipatory eye movement prior to turns
- Environmental scanning was decreased while walking

Intervention:
- Visual cues improved fixations during walking
- Deep brain stimulation improved saccade frequency and initial saccade velocity during turning

Disease Severity:
- Less voluntary eye movement during gait was associated with increased disease severity

Conclusions
- Use of ETT to track gaze behavior during a variety of mobility tasks is feasible in persons with neurological conditions
- Although studies have investigated gaze behavior during dynamic mobility tasks in large number of people with PD, more research is needed to identify patterns in other neurological populations
- Selected studies looked at mobility tasks in a laboratory setting with limited transferability to real-world settings

Clinical Relevance
- Measuring gaze behavior in PD can identify potential correlations and implications for mobility impairments
- Interventions in PD should address visual attention to the mobility task to improve task performance and potentially decrease risk for falls
- Potential for clinical integration of ETT with continued development of technology and reduction in cost
- Further research needed specific to use of ETT during mobility before implementation outside of PD population

For a full list of references please visit: